
Hongxing Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. ACS Nano, 2017, 11, 10681-10688.	14.6	216
2	Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Optics Express, 2018, 26, 11728.	3.4	188
3	Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale, 2020, 12, 5374-5379.	5.6	92
4	Single-crystalline tower-like ZnO microrod UV lasers. Journal of Materials Chemistry C, 2013, 1, 202-206.	5.5	55
5	Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nature Communications, 2020, 11, 329.	12.8	51
6	Ultrahigh Quality Upconverted Singleâ€Mode Lasing in Cesium Lead Bromide Spherical Microcavity. Advanced Optical Materials, 2018, 6, 1800391.	7.3	47
7	Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications. Nanoscale, 2021, 13, 7831-7837.	5.6	44
8	High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber. Optics Express, 2020, 28, 26836.	3.4	41
9	Two-photon absorption and emission in CsPb(Br/I) ₃ cesium lead halide perovskite quantum dots. CrystEngComm, 2016, 18, 7945-7949.	2.6	40
10	Graphene and Carbon Nanotube Polymer Composites for Laser Protection. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 736-746.	3.7	37
11	Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. Journal of Materials Chemistry C, 2018, 6, 11740-11748.	5.5	37
12	High-Temperature Upconverted Single-Mode Lasing in 3D Fully Inorganic Perovskite Microcubic Cavity. ACS Photonics, 2019, 6, 793-801.	6.6	35
13	Whispering gallery modes in indium oxide hexagonal microcavities. Applied Physics Letters, 2009, 94, 173115.	3.3	29
14	Double-layer metal mesh etched by femtosecond laser for high-performance electromagnetic interference shielding window. RSC Advances, 2019, 9, 22282-22287.	3.6	28
15	Quantum Dot Selfâ€Assembly Enables Lowâ€Threshold Lasing. Advanced Science, 2021, 8, e2101125.	11.2	28
16	Single-crystalline hexagonal ZnO microtube optical resonators. Journal of Materials Chemistry, 2010, 20, 5510.	6.7	26
17	Robust exciton-polariton effect in a ZnO whispering gallery microcavity at high temperature. Applied Physics Letters, 2012, 100, .	3.3	26
18	Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K. Light: Science and Applications, 2021, 10, 60.	16.6	25

HONGXING DONG

#	Article	IF	CITATIONS
19	Broad-band lead halide perovskite quantum dot single-mode lasers. Journal of Materials Chemistry C, 2020, 8, 13642-13647.	5.5	24
20	Linearly polarized lasing based on coupled perovskite microspheres. Nanoscale, 2020, 12, 5805-5811.	5.6	22
21	Geometry Dependent Evolution of the Resonant Mode in ZnO Elongated Hexagonal Microcavity. Scientific Reports, 2016, 6, 19273.	3.3	19
22	Surfaceâ€Energyâ€Driven Growth of ZnO Hexagonal Microtube Optical Resonators. Advanced Optical Materials, 2016, 4, 126-134.	7.3	19
23	Colloidal quantum-dot-based silica gel glass: two-photon absorption, emission, and quenching mechanism. Nanoscale, 2016, 8, 16440-16448.	5.6	19
24	CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-7.	2.9	19
25	Nanolayered VO ₂ -Based Switchable Terahertz Metasurfaces as Near-Perfect Absorbers and Antireflection Coatings. ACS Applied Nano Materials, 2022, 5, 5569-5577.	5.0	17
26	Realization of an all-optically controlled dynamic superlattice for exciton–polaritons. Nanoscale, 2018, 10, 14082-14089.	5.6	15
27	A novel synthesis and excellent photodegradation of flower-like ZnO hierarchical microspheres. CrystEngComm, 2013, 15, 10272.	2.6	14
28	Single-crystalline polyhedral In2O3 vertical Fabry–Pérot resonators. Applied Physics Letters, 2011, 98, 011913.	3.3	13
29	An Allâ€Inorganic Perovskiteâ€Phase Rubidium Lead Bromide Nanolaser. Angewandte Chemie - International Edition, 2019, 58, 16134-16140.	13.8	12
30	Polariton–Polariton Interactions Revealed in a One-dimensional Whispering Gallery Microcavity. Nano Letters, 2020, 20, 1552-1560.	9.1	12
31	Thermodynamic-effect-induced growth, optical modulation and UV lasing of hierarchical ZnO Fabry–P©rot resonators. Journal of Materials Chemistry, 2012, 22, 3069.	6.7	11
32	Optical modulation of ZnO microwire optical resonators with a parallelogram cross-section. Nanoscale, 2013, 5, 4123.	5.6	11
33	Optical modulation in microsized optical resonators with irregular hexagonal cross-section. Journal of Materials Chemistry C, 2014, 2, 8976-8982.	5.5	11
34	Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial absorber. RSC Advances, 2020, 10, 5146-5151.	3.6	11
35	Indium oxide octahedra optical microcavities. Applied Physics Letters, 2010, 97, 223114.	3.3	10
36	Ultrafast Saturable Absorption of Core/Shell Colloidal Quantum Dots. Particle and Particle Systems Characterization, 2017, 34, 1600193.	2.3	10

HONGXING DONG

#	Article	IF	CITATIONS
37	Allâ€Photonic Miniature Perovskite Encoder with a Terahertz Bandwidth. Laser and Photonics Reviews, 2020, 14, 1900398.	8.7	10
38	Freeâ€Standing, Singleâ€Crystalline Parallelogram Sb Shallowâ€Doped ZnO Waveâ€Guided Optical Resonators. Advanced Optical Materials, 2014, 2, 1090-1097.	7.3	8
39	Demonstration of Thermally Tunable Multi-Band and Ultra-Broadband Metamaterial Absorbers Maintaining High Efficiency during Tuning Process. Materials, 2021, 14, 5708.	2.9	8
40	Ultrafast Optical Properties of Cavityâ€Enhanced Superfluorescence. Advanced Optical Materials, 2022, 10, .	7.3	8
41	Femtosecond Dynamics of a Polariton Bosonic Cascade at Room Temperature. Nano Letters, 2022, 22, 2023-2029.	9.1	7
42	Relaxation Oscillations of an Exciton–Polariton Condensate Driven by Parametric Scattering. Nano Letters, 2022, 22, 3026-3032.	9.1	7
43	Synthesis of indium oxide hexagonal microcavity and identification of its whispering gallery modes. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1672-1674.	0.8	6
44	An Allâ€Inorganic Perovskiteâ€Phase Rubidium Lead Bromide Nanolaser. Angewandte Chemie, 2019, 131, 16280-16286.	2.0	6
45	Strain-engineered room temperature cavity polariton in ZnO whispering gallery microcavity. Applied Physics Letters, 2020, 116, .	3.3	6
46	Facile synthesis and optical properties of colloidal quantum dots/ZnO composite optical resonators. RSC Advances, 2018, 8, 1778-1783.	3.6	3
47	Stable Multiâ€Wavelength Lasing in Single Perovskite Quantum Dot Superlattice. Advanced Optical Materials, 0, , 2200494.	7.3	3
48	Solventâ€Mediated Structural Evolution in Colloidal Lead Halide Perovskite Nanocrystals Selfâ€Assembly. Advanced Materials Interfaces, 2022, 9, .	3.7	1
49	Solventâ€Mediated Structural Evolution in Colloidal Lead Halide Perovskite Nanocrystals Selfâ€Assembly (Adv. Mater. Interfaces 19/2022). Advanced Materials Interfaces, 2022, 9, .	3.7	Ο