Franco MartÃ-n Cabrerizo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195578/publications.pdf

Version: 2024-02-01

279798 361022 68 1,495 23 35 citations g-index h-index papers 69 69 69 1195 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Study of the photolysis of folic acid and 6-formylpterin in acid aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 135, 147-154.	3.9	85
2	Oxidation of 2â€~-Deoxyguanosine 5â€~-Monophosphate Photoinduced by Pterin:  Type I versus Type II Mechanism. Journal of the American Chemical Society, 2008, 130, 3001-3011.	13.7	82
3	Decamolybdodicobaltate(III) heteropolyanion: structural, spectroscopical, thermal and hydrotreating catalytic properties. Journal of Molecular Catalysis A, 2002, 186, 89-100.	4.8	75
4	One- and Two-Photon Excitation of \hat{l}^2 -Carbolines in Aqueous Solution: pH-Dependent Spectroscopy, Photochemistry, and Photophysics. Journal of Physical Chemistry A, 2009, 113, 6648-6656.	2.5	59
5	Antifungal activity of \hat{I}^2 -carbolines on Penicillium digitatum and Botrytis cinerea. Food Microbiology, 2017, 62, 9-14.	4.2	54
6	Photosensitization of 2′-deoxyadenosine-5′-monophosphate by pterin. Organic and Biomolecular Chemistry, 2007, 5, 2792.	2.8	50
7	In vitro evaluation of \hat{l}^2 -carboline alkaloids as potential anti-Toxoplasma agents. BMC Research Notes, 2013, 6, 193.	1.4	50
8	Fluorescence Quenching by Oxygen: "Debunking―a Classic Rule. ChemPhysChem, 2010, 11, 796-798.	2.1	40
9	Photosensitization of DNA by \hat{l}^2 -carbolines: Kinetic analysis and photoproduct characterization. Organic and Biomolecular Chemistry, 2012, 10, 1807.	2.8	38
10	Substituent Effects on the Photophysical Properties of Pterin Derivatives in Acidic and Alkaline Aqueous Solutions. Photochemistry and Photobiology, 2005, 81, 1234.	2.5	37
11	Photocatalysis and photoelectrochemical glucose oxidation on Bi2WO6: Conditions for the concomitant H2 production. Renewable Energy, 2020, 152, 974-983.	8.9	36
12	Photochemistry of norharmane in aqueous solution. Photochemical and Photobiological Sciences, 2009, 8, 1139-1149.	2.9	34
13	\hat{l}^2 -Carboline derivatives as novel antivirals for herpes simplex virus. International Journal of Antimicrobial Agents, 2018, 52, 459-468.	2.5	34
14	Study of the photolysis of 6-carboxypterin in acid and alkaline aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132, 53-57.	3.9	33
15	Mechanisms of DNA damage by photoexcited 9-methyl- \hat{l}^2 -carbolines. Organic and Biomolecular Chemistry, 2013, 11, 5300.	2.8	32
16	UVA Photoactivation of Harmol Enhances Its Antifungal Activity against the Phytopathogens Penicillium digitatum and Botrytis cinerea. Frontiers in Microbiology, 2017, 8, 347.	3.5	32
17	Photochemical Behavior of Folic Acid in Alkaline Aqueous Solutions and Evolution of Its Photoproducts. Helvetica Chimica Acta, 2002, 85, 2300-2315.	1.6	31
18	Reactivity of Conjugated and Unconjugated Pterins with Singlet Oxygen (O2(1î"g)): Physical Quenching and Chemical Reactionâ€. Photochemistry and Photobiology, 2007, 83, 526-534.	2.5	28

#	Article	IF	CITATIONS
19	Photosensitized cleavage of plasmidic DNA by norharmane, a naturally occurring \hat{l}^2 -carboline. Organic and Biomolecular Chemistry, 2010, 8, 2543.	2.8	28
20	Quenching of the Fluorescence of Aromatic Pterins by Deoxynucleotides. Journal of Physical Chemistry A, 2009, 113, 1794-1799.	2.5	27
21	Generation of Reactive Oxygen Species during the Photolysis of 6-(Hydroxymethyl)pterin in Alkaline Aqueous Solutions. Helvetica Chimica Acta, 2004, 87, 349-365.	1.6	25
22	Photochemistry of dihydrobiopterin in aqueous solution. Organic and Biomolecular Chemistry, 2010, 8, 800-810.	2.8	25
23	Photophysical and Photochemical Properties of Naturally Occurring <i>nor</i> melinonine F and Melinonine F Alkaloids and Structurally Related N(2)―and/or N(9)―methylâ€ <i>i²</i> àê€carboline Derivatives. Photochemistry and Photobiology, 2018, 94, 36-51.	2.5	24
24	Photooxidation of Pterin in Aqueous Solutions: Biological and Biomedical Implications. Chemistry and Biodiversity, 2004, 1, 1800-1811.	2.1	23
25	Intra- and extra-cellular DNA damage by harmine and 9-methyl-harmine. Journal of Photochemistry and Photobiology B: Biology, 2014, 132, 66-71.	3.8	23
26	New Results on the Photochemistry of Biopterin and Neopterin in Aqueous Solution. Photochemistry and Photobiology, 2009, 85, 365-373.	2.5	21
27	î"-Al2O3-Supported XMo6 Anderson Heteropolyoxomolybdates: Adsorption Studies for X = TeVI, AlIII, CollI, CrIII and NiII by DR Spectroscopy and TPR Analysis. Adsorption Science and Technology, 2000, 18, 591-608.	3.2	20
28	Photodynamic Effects of Pterin on HeLa Cells. Photochemistry and Photobiology, 2011, 87, 862-866.	2.5	20
29	Photosensitized electron transfer within a self-assembled norharmane $\hat{a}\in \hat{a}\in \hat{a}$ deoxyadenosine $\hat{a}\in \hat{a}\in \hat{a}$ -monophosphate (dAMP) complex. Organic and Biomolecular Chemistry, 2012, 10, 9359.	2.8	20
30	Experimental and computational study of solvent effects on one- and two-photon absorption spectra of chlorinated harmines. Physical Chemistry Chemical Physics, 2015, 17, 12090-12099.	2.8	20
31	Synthesis and Electronic Spectroscopy of Bromocarbazoles. Direct Bromination of N-and C-Substituted Carbazoles by N-Bromosuccinimide or a N-Bromosuccinimide / Silica Gel System. Helvetica Chimica Acta, 2006, 89, 1123-1139.	1.6	19
32	Predictive modeling of the total deactivation rate constant of singlet oxygen by heterocyclic compounds. Journal of Molecular Graphics and Modelling, 2009, 28, 12-19.	2.4	19
33	Chemical and photochemical properties of chloroharmine derivatives in aqueous solutions. Physical Chemistry Chemical Physics, 2016, 18, 886-900.	2.8	19
34	Synthesis, Structural Characterization and Biological Evaluation of Rhenium(I) Tricarbonyl Complexes with β arboline Ligands ChemistrySelect, 2017, 2, 8666-8672.	1.5	19
35	Exploring Chemical Kinetics at Home in Times of Pandemic: Following the Bleaching of Food Dye Allura Red Using a Smartphone. Journal of Chemical Education, 2021, 98, 2117-2121.	2.3	19
36	Photochemistry of 6-Formylpterin in Alkaline Medium. Helvetica Chimica Acta, 2001, 84, 3849-3860.	1.6	17

#	Article	IF	CITATIONS
37	Albumin–Folate Conjugates for Drugâ€ŧargeting in Photodynamic Therapy. Photochemistry and Photobiology, 2016, 92, 611-619.	2.5	17
38	DNA damage photo-induced by chloroharmine isomers: hydrolysis <i>versus</i> oxidation of nucleobases. Organic and Biomolecular Chemistry, 2018, 16, 2170-2184.	2.8	17
39	Photochemical Behavior of 6-Methylpterin in Aqueous Solutions: Generation of Reactive Oxygen Species¶. Photochemistry and Photobiology, 2005, 81, 793.	2.5	17
40	Waterâ€Soluble (Pterin)rhenium(I) Complex: Synthesis, Structural Characterization, and Two Reversible Protonation–Deprotonation Behavior in Aqueous Solutions. European Journal of Inorganic Chemistry, 2012, 2012, 4801-4810.	2.0	16
41	DNA Oxidation Photoinduced by Norharmane Rhenium(I) Polypyridyl Complexes: Effect of the Bidentate N,Nâ€²â€Łigands on the Damage Profile. Chemistry - A European Journal, 2018, 24, 12902-12911.	3.3	16
42	Determining the molecular basis for the pH-dependent interaction between $2\hat{a}\in^2$ -deoxynucleotides and 9H-pyrido[3,4-b]indole in its ground and electronic excited states. Physical Chemistry Chemical Physics, 2014, 16, 16547-16562.	2.8	15
43	Norharmane rhenium(<scp>i</scp>) polypyridyl complexes: synthesis, structural and spectroscopic characterization. Dalton Transactions, 2015, 44, 17064-17074.	3.3	14
44	Photosensitizing role of R-phycoerythrin red protein and $<$ mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1960" altimg="si92.svg"> $<$ mml:mi> 2 $<$ mml:math>-carboline alkaloids in Dye sensitized solar cell. Electrochemical and spectroscopic characterization. Energy Reports, 2020, 6, 25-36.	5.1	14
45	The photosensitizing activity of lumazine using 2′-deoxyguanosine 5′-monophosphate and HeLa cells as targets. Photochemical and Photobiological Sciences, 2009, 8, 1539.	2.9	13
46	The photophysics of nitrocarbazoles used as UV-MALDI matrices: Comparative spectroscopic and optoacoustic studies of mononitro- and dinitrocarbazoles. Chemical Physics Letters, 2007, 446, 49-55.	2.6	12
47	A cockspur for the DSS cells: Erythrina crista-galli sensitizers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 176, 91-98.	3.9	12
48	Photoinduced Formation of Reactive Oxygen Species from the Acid Form of 6-(Hydroxymethyl)pterin in Aqueous Solution. Helvetica Chimica Acta, 2006, 89, 1090-1104.	1.6	10
49	DNA damage induced by bare and loaded microporous coordination polymers from their ground and electronic excited states. Physical Chemistry Chemical Physics, 2015, 17, 12462-12465.	2.8	10
50	Photocatalytic Oxidation of Urea on Surface-Modified Bi ₂ WO ₆ with <i>trans</i> -4-Stilbenecarboxaldehyde. Journal of Physical Chemistry C, 2021, 125, 12682-12689.	3.1	10
51	Light-induced full aromatization and hydroxylation of 7-methoxy-1-methyl-3,4-dihydro-2H-pyrido[3,4-b]indole alkaloid: Oxygen partial pressure as a key modulator of the photoproducts distribution. Journal of Photochemistry and Photobiology B: Biology, 2019, 199, 111600.	3.8	9
52	Comment on "Binding of alkaloid harmalol to DNA: Photophysical and calorimetric approach― Journal of Photochemistry and Photobiology B: Biology, 2014, 136, 26-28.	3.8	8
53	Photophysical properties of [(norharmane)Re(CO)3 (L)]+ complexes (L = bpy, phen or dppz). Redox behavior of the excited states and their interaction with Calf Thymus DNA. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 169-176.	3.9	8
54	1H NMR characterization of the intermediate formed upon UV-A excitation of biopterin, neopterin and 6-hydroxymethylpterin in O2-free aqueous solutions. Chemical Physics Letters, 2010, 484, 330-332.	2.6	7

#	Article	IF	CITATIONS
55	$\langle i \rangle N \langle i \rangle$ -Methyl- \hat{l}^2 -carboline alkaloids: structure-dependent photosensitizing properties and localization in subcellular domains. Organic and Biomolecular Chemistry, 2020, 18, 6519-6530.	2.8	7
56	In vitro Effect of Harmine Alkaloid and Its N-Methyl Derivatives Against Toxoplasma gondii. Frontiers in Microbiology, 2021, 12, 716534.	3.5	7
57	Characterization and reactivity of photodimers of dihydroneopterin and dihydrobiopterin. Photochemical and Photobiological Sciences, 2012, 11, 979.	2.9	6
58	Unraveling Kinetic Effects during Photoelectrochemical Mineralization of Phenols. Rutile:Anatase TiO ₂ Nanotube Photoanodes under Thin-Layer Conditions. Journal of Physical Chemistry C, 2021, 125, 610-617.	3.1	6
59	A Large Entropic Term Due to Water Rearrangement is Concomitant with the Photoproduction of Anionic Free-Base Porphyrin Triplet States in Aqueous Solutionsâ€. Photochemistry and Photobiology, 2007, 83, 503-510.	2.5	4
60	Photophysical and spectroscopic features of 3,4-dihydro- \hat{l}^2 -carbolines: a combined experimental and theoretical approach. Physical Chemistry Chemical Physics, 2020, 22, 20901-20913.	2.8	4
61	Electronic spectroscopy of the \hat{l}^2 -carboline derivatives nitronorharmanes, nitroharmanes, nitroharmines and chloroharmines in homogeneous media and in solid matrix. Arkivoc, 2006, 2005, 295-310.	0.5	4
62	Photophysics and photochemistry of carminic acid and related natural pigments. Physical Chemistry Chemical Physics, 2020, 22, 9534-9542.	2.8	3
63	Spectroscopic and quantum chemical characterization of the ground and lowest electronically excited singlet and triplet states of halo- and nitro-harmines in aqueous media. Physical Chemistry Chemical Physics, 2021, 23, 11039-11051.	2.8	3
64	A comprehensive analysis of direct and photosensitized attenuation of Toxoplasma gondii tachyzoites. Journal of Photochemistry and Photobiology B: Biology, 2017, 177, 8-17.	3.8	2
65	Photochemical behaviour of 6-methylpterin in Aqueous Solutions: Generation of Reactive Oxygen Species. Photochemistry and Photobiology, 2005, 81, 793-801.	2.5	2
66	Photophysical properties of a $\hat{1}^2$ -Carboline Rhenium (I) complex. Solvent effects on excited states and their redox reactivity. Journal of Photochemistry and Photobiology, 2021, 8, 100078.	2.5	2
67	Photochemical Behavior of 6â€Methylpterin in Aqueous Solutions: Generation of Reactive Oxygen Species [¶] . Photochemistry and Photobiology, 2005, 81, 793-801.	2.5	1
68	FotoelectroquÃmica en sistemas nanoestructurados: una discusión desde sus lÃmites naturales. InfoANALÃ₹ICA, 0, , 52-77.	0.1	0