
Maya Kiskinova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nature Nanotechnology, 2011, 6, 651-657.	31.5	197
2	Photoelectron microscopy and applications in surface and materials science. Progress in Surface Science, 2002, 70, 187-260.	8.3	187
3	Four-wave mixing experiments with extreme ultraviolet transient gratings. Nature, 2015, 520, 205-208.	27.8	184
4	<i>In Situ</i> X-Ray Photoelectron Spectroscopy Studies of Gas-Solid Interfaces at Near-Ambient Conditions. MRS Bulletin, 2007, 32, 1022-1030.	3.5	180
5	Two-colour pump–probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser. Nature Communications, 2013, 4, 2476.	12.8	156
6	ESCA Microscopy at ELETTRA: what it is like to perform spectromicroscopy experiments on a third generation synchrotron radiation source. Journal of Electron Spectroscopy and Related Phenomena, 1997, 84, 73-83.	1.7	137
7	Imaging and Spectroscopy of Multiwalled Carbon Nanotubes during Oxidation: Defects and Oxygen Bonding. Advanced Materials, 2009, 21, 1916-1920.	21.0	85
8	Degradation of organic light-emitting diodes under different environment at high drive conditions. Organic Electronics, 2007, 8, 37-43.	2.6	78
9	Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale, 2014, 6, 14394-14403.	5.6	78
10	Identification of Subsurface Oxygen Species Created during Oxidation of Ru(0001). Journal of Physical Chemistry B, 2005, 109, 14052-14058.	2.6	75
11	48-Channel electron detector for photoemission spectroscopy and microscopy. Review of Scientific Instruments, 2004, 75, 64-68.	1.3	74
12	Artefact formation in scanning photoelectron emission microscopy. Ultramicroscopy, 1998, 75, 35-51.	1.9	68
13	Scanning Photoelectron Microscopy: a Powerful Technique for Probing Micro and Nano-Structures. E-Journal of Surface Science and Nanotechnology, 2011, 9, 158-162.	0.4	54
14	Mechanism of dark-spot degradation of organic light-emitting devices. Applied Physics Letters, 2005, 86, 041105.	3.3	53
15	Seeded X-ray free-electron laser generating radiation with laser statistical properties. Nature Communications, 2018, 9, 4498.	12.8	51
16	Initial Oxidation of a Rh(110) Surface Using Atomic or Molecular Oxygen and Reduction of the Surface Oxide by Hydrogen. Journal of Physical Chemistry B, 2005, 109, 13649-13655.	2.6	48
17	Spectral and spatial anisotropy of the oxide growth onRu(0001). Journal of Chemical Physics, 2002, 117, 8104-8109.	3.0	47
18	Recent Approaches for Bridging the Pressure Gap in Photoelectron Microspectroscopy. Topics in Catalysis, 2016, 59, 448-468.	2.8	45

Μαγά Κισκινονά

#	Article	IF	CITATIONS
19	An in Situ Synchrotron-Based Soft X-ray Microscopy Investigation of Ni Electrodeposition in a Thin-Layer Cell. Journal of Physical Chemistry C, 2009, 113, 9783-9787.	3.1	38
20	Synchrotron-based photoelectron microscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 601, 195-202.	1.6	36
21	Defect-Controlled Transport Properties of Metallic Atoms along Carbon Nanotube Surfaces. Physical Review Letters, 2007, 99, 046803.	7.8	31
22	Metallic Plate Corrosion and Uptake of Corrosion Products by Nafion in Polymer Electrolyte Membrane Fuel Cells. ChemSusChem, 2010, 3, 846-850.	6.8	27
23	Contactless monitoring of the diameter-dependent conductivity of GaAs nanowires. Nano Research, 2010, 3, 706-713.	10.4	25
24	In-situ photoelectron microspectroscopy during the operation of a single-chamber SOFC. Electrochemistry Communications, 2012, 24, 104-107.	4.7	25
25	Characterization of indium tin oxide surfaces after KOH and HCl treatments. Organic Electronics, 2008, 9, 253-261.	2.6	22
26	In-situ Photoelectron Microspectroscopy and Imaging of Electrochemical Processes at the Electrodes of a Self-driven Cell. Scientific Reports, 2013, 3, 2848.	3.3	22
27	Inâ€Situ Xâ€Ray Spectromicroscopy Investigation of the Material Stability of SOFC Metal Interconnects in Operating Electrochemical Cells. ChemSusChem, 2011, 4, 1099-1103.	6.8	19
28	Advances in instrumentation for FEL-based four-wave-mixing experiments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907, 132-148.	1.6	18
29	Photoelectron microscopy at Elettra: Recent advances and perspectives. Journal of Electron Spectroscopy and Related Phenomena, 2018, 224, 59-67.	1.7	18
30	Shedding light on electrodeposition dynamics tracked in situ via soft X-ray coherent diffraction imaging. Nano Research, 2016, 9, 2046-2056.	10.4	16
31	MgO-Supported Rhodium Particles and Films: Size, Morphology, and Reactivity. Journal of Physical Chemistry C, 2008, 112, 9040-9044.	3.1	15
32	In Situ Electrochemical X-ray Spectromicroscopy Investigation of the Reduction/Reoxidation Dynamics of Ni–Cu Solid Oxide Fuel Cell Anodic Material in Contact with a Cr Interconnect in 2 × 10 ^{–6} mbar O ₂ . Journal of Physical Chemistry C, 2012, 116, 7243-7248.	3.1	13
33	Microscale Evolution of Surface Chemistry and Morphology of the Key Components in Operating Hydrocarbon-Fuelled SOFCs. Journal of Physical Chemistry C, 2012, 116, 23188-23193.	3.1	12
34	Characterization of ultrafast free-electron laser pulses using extreme-ultraviolet transient gratings. Journal of Synchrotron Radiation, 2018, 25, 32-38.	2.4	12
35	The role of chromium in the corrosion performance of cobalt- and cobalt-nickel based hardmetal binders: A study centred on X-ray absorption microspectroscopy. International Journal of Refractory Metals and Hard Materials, 2020, 92, 105320.	3.8	11
36	Soft X-ray ptychography as a tool for in operando morphochemical studies of electrodeposition processes with nanometric lateral resolution. Journal of Electron Spectroscopy and Related Phenomena, 2017, 220, 147-155.	1.7	10

MAYA KISKINOVA

#	Article	IF	CITATIONS
37	Nanoscale morphology and oxidation of ion-sputtered Rh(110) and Ru(0001). Journal of Electron Spectroscopy and Related Phenomena, 2008, 166-167, 89-93.	1.7	9
38	Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements. Journal of Physics: Conference Series, 2013, 425, 182010.	0.4	9
39	Operando soft Xâ€ray microscope study of rechargeable Zn–air battery anodes in deep eutectic solvent electrolyte. X-Ray Spectrometry, 2019, 48, 527-535.	1.4	8
40	Oxidation of Supported PtRh Particles: Size and Morphology Effects. Journal of Physical Chemistry C, 2010, 114, 16885-16891.	3.1	7
41	Characterization of catalytic materials with scanning photoelectron microscopy: Present and future. Surface Science, 2016, 652, 20-25.	1.9	7
42	Depth-Dependent Scanning Photoelectron Microspectroscopy Unravels the Mechanism of Dynamic Pattern Formation in Alloy Electrodeposition. Journal of Physical Chemistry C, 2018, 122, 15996-16007.	3.1	7
43	Monitoring dynamic electrochemical processes with in situ ptychography. Applied Nanoscience (Switzerland), 2018, 8, 627-636.	3.1	5
44	X-ray imaging and micro-spectroscopy unravel the role of zincate and zinc oxide in the cycling of zinc anodes in mildly acidic aqueous electrolytes. Journal of Power Sources, 2022, 524, 231063.	7.8	5
45	Electrodeposition of a Mn–Cu–ZnO Hybrid Material for Supercapacitors: A Soft Xâ€ray Fluorescence and Absorption Microspectroscopy Study. ChemElectroChem, 2014, 1, 392-399.	3.4	4
46	Exploring the multiparameter nature of EUV-visible wave mixing at the FERMI FEL. Structural Dynamics, 2019, 6, 040901.	2.3	3
47	C ₆₈ : A non-IPR fullerene capable of binding extraordinary amounts of Cs atoms. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 206-214.	2.1	2
48	Highâ€Temperature Cs _x C ₅₈ Fullerides. Physica Status Solidi (B): Basic Research, 2019, 256, 1800453.	1.5	2
49	Scanning Photoelectron Microscopy: Past, Present and Future. Springer Handbooks, 2020, , 427-448.	0.6	1
50	In situ photoelectron spectromicroscopy for the investigation of solid oxide–based electrochemical systems. , 2020, , 55-89.		0