Qifeng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new linearized compact multisplitting scheme for the nonlinear convection–reaction–diffusion equations with delay. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 3278-3288.	3.3	45
2	A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations. Applied Mathematics Letters, 2013, 26, 306-312.	2.7	43
3	The compact and Crank–Nicolson ADI schemes for two-dimensional semilinear multidelay parabolic equations. Journal of Computational and Applied Mathematics, 2016, 306, 217-230.	2.0	40
4	Analysis of the compact difference scheme for the semilinear fractional partial differential equation with time delay. Applicable Analysis, 2017, 96, 1867-1884.	1.3	39
5	Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg–Landau equation. Computers and Mathematics With Applications, 2020, 80, 1201-1220.	2.7	32
6	Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations. Journal of Scientific Computing, 2020, 83, 1.	2.3	25
7	The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers' equation. Advances in Computational Mathematics, 2021, 47, 1.	1.6	23
8	Asymptotic Stability of Compact and Linear \$\$heta \$\$-Methods for Space Fractional Delay Generalized Diffusion Equation. Journal of Scientific Computing, 2019, 81, 2413-2446.	2.3	20
9	A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations. Journal of Computational and Applied Mathematics, 2021, 389, 113355.	2.0	20
10	Compact Î,-method for the generalized delay diffusion equation. Applied Mathematics and Computation, 2018, 316, 357-369.	2.2	18
11	Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation. Advances in Computational Mathematics, 2021, 47, 1.	1.6	16
12	Multistep finite difference schemes for the variable coefficient delay parabolic equations. Journal of Difference Equations and Applications, 2016, 22, 745-765.	1.1	15
13	Convergence and Stability in Maximum Norms of Linearized Fourth-Order Conservative Compact Scheme for Benjamin–Bona–Mahony–Burgers' Equation. Journal of Scientific Computing, 2021, 87, 1.	2.3	15
14	Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations. Applied Mathematics and Computation, 2019, 358, 91-110.	2.2	14
15	The pointwise estimates of a conservative difference scheme for Burgers' equation. Numerical Methods for Partial Differential Equations, 2020, 36, 1611-1628.	3.6	14
16	Linearly compact scheme for 2D Sobolev equation with Burgers' type nonlinearity. Numerical Algorithms, 2022, 91, 1081-1114.	1.9	12
17	Compact scheme for fractional diffusion-wave equation with spatial variable coefficient and delays. Applicable Analysis, 2022, 101, 1911-1932.	1.3	11
18	The numerical analysis of two linearized difference schemes for the <scp>Benjamin–Bona–Mahony–Burgers</scp> equation. Numerical Methods for Partial Differential Equations, 2020, 36, 1790-1810.	3.6	10

QIFENG ZHANG

#	Article	IF	CITATIONS
19	An Effective Algorithm for Delay Fractional Convection-Diffusion Wave Equation Based on Reversible Exponential Recovery Method. IEEE Access, 2019, 7, 5554-5563.	4.2	8
20	Block preconditioning strategies for nonlinear viscous wave equations. Applied Mathematical Modelling, 2013, 37, 5801-5813.	4.2	5
21	Numerical approximation for two-dimensional neutral parabolic differential equations with delay. International Journal of Modelling and Simulation, 2016, 36, 12-19.	3.3	3
22	A three-level linearized difference scheme for nonlinear SchrĶdinger equation with absorbing boundary conditions. Applied Numerical Mathematics, 2020, 156, 32-49.	2.1	3
23	A modified regularized algorithm for a semilinear spaceâ€fractional backward diffusion problem. Mathematical Methods in the Applied Sciences, 2017, 40, 5996-6006.	2.3	2
24	A conservative difference scheme with optimal pointwise error estimates for twoâ€dimensional space fractional nonlinear Schrödinger equations. Numerical Methods for Partial Differential Equations, 2022, 38, 4-32.	3.6	2
25	Mesoscale modeling of the crystallization parameters identification during the iron-based catalyst preparation process: the dilute concentration case. Applicable Analysis, 2020, 99, 2191-2209.	1.3	1
26	High-order compact schemes for semilinear parabolic moving boundary problems. Applied Numerical Mathematics, 2021, 161, 452-468.	2.1	1