
Xiaoguang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195371/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146, 510-528.	1.1	94
2	Constraints on aerosol sources using GEOS hem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6396-6413.	1.2	89
3	Potential application of VIIRS Day/Night Band for monitoring nighttime surface PM 2.5 air quality from space. Atmospheric Environment, 2016, 124, 55-63.	1.9	89
4	Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China. Remote Sensing of Environment, 2010, 114, 2575-2583.	4.6	86
5	Topâ€down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOSâ€Chem adjoint model. Geophysical Research Letters, 2012, 39, .	1.5	84
6	Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: First results from EPIC/DSCOVR at Lagrangeâ€1 point. Geophysical Research Letters, 2017, 44, 7544-7554.	1.5	69
7	Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 1. Information content analysis. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7059-7078.	1.2	65
8	Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 2. A new research algorithm and case demonstration. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7079-7098.	1.2	61
9	Monthly topâ€down NO _{<i>x</i>} emissions for China (2005–2012): A hybrid inversion method and trend analysis. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4600-4625.	1.2	59
10	Quantifying contributions of natural and anthropogenic dust emission from different climatic regions. Atmospheric Environment, 2018, 191, 94-104.	1.9	56
11	An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 178, 400-415.	1.1	45
12	Polarimetric remote sensing in oxygen A and B bands: sensitivity study and information content analysis for vertical profile of aerosols. Atmospheric Measurement Techniques, 2016, 9, 2077-2092.	1.2	43
13	An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 192, 14-29.	1.1	40
14	Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space. Atmospheric Measurement Techniques, 2019, 12, 3269-3288.	1.2	40
15	Evaluation of MODIS Deep Blue Aerosol Algorithm in Desert Region of East Asia: Ground Validation and Intercomparison. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,357.	1.2	39
16	Angular dependence of aerosol information content in CAPI/TanSat observation over land: Effect of polarization and synergy with A-train satellites. Remote Sensing of Environment, 2017, 196, 163-177.	4.6	38
17	Improving Remote Sensing of Aerosol Microphysical Properties by Nearâ€Infrared Polarimetric Measurements Over Vegetated Land: Information Content Analysis. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2215-2243.	1.2	35
18	Detecting nighttime fire combustion phase by hybrid application of visible and infrared radiation from Suomi NPP VIIRS. Remote Sensing of Environment, 2020, 237, 111466.	4.6	32

XIAOGUANG XU

#	Article	IF	CITATIONS
19	Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument. Frontiers in Earth Science, 2019, 7, .	0.8	31
20	A new approach for monthly updates of anthropogenic sulfur dioxide emissions from space: Application to China and implications for air quality forecasts. Geophysical Research Letters, 2016, 43, 9931-9938.	1.5	29
21	Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model. Atmospheric Measurement Techniques, 2021, 14, 4083-4110.	1.2	27
22	How Do Aerosol Properties Affect the Temporal Variation of MODIS AOD Bias in Eastern China?. Remote Sensing, 2017, 9, 800.	1.8	26
23	Evaluation of Aerosol Optical Depth and Aerosol Models from VIIRS Retrieval Algorithms over North China Plain. Remote Sensing, 2017, 9, 432.	1.8	25
24	MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water. Remote Sensing, 2017, 9, 595.	1.8	25
25	Characterization of Aerosol Type Over East Asia by 4.4 km MISR Product: First Insight and General Performance. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031909.	1.2	20
26	Retrieval of aerosol properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) observations during ACEPOL 2017. Atmospheric Measurement Techniques, 2020, 13, 5207-5236.	1.2	20
27	Development of a nighttime shortwave radiative transfer model for remote sensing of nocturnal aerosols and fires from VIIRS. Remote Sensing of Environment, 2020, 241, 111727.	4.6	18
28	An algorithm for hyperspectral remote sensing of aerosols: 3. Application to the GEO-TASO data in KORUS-AQ field campaign. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107161.	1.1	16
29	Inverse modeling of SO ₂ and NO _{<i>x</i>} emissions over China using multisensor satellite data – Part 1: Formulation and sensitivity analysis. Atmospheric Chemistry and Physics, 2020, 20, 6631-6650.	1.9	16
30	Nighttime smoke aerosol optical depth over U.S. rural areas: First retrieval from VIIRS moonlight observations. Remote Sensing of Environment, 2021, 267, 112717.	4.6	15
31	<i>A Tale of Two Dust Storms</i> : analysis of a complex dust event in the Middle East. Atmospheric Measurement Techniques, 2019, 12, 5101-5118.	1.2	14
32	First retrieval of absorbing aerosol height over dark target using TROPOMI oxygen B band: Algorithm development and application for surface particulate matter estimates. Remote Sensing of Environment, 2021, 265, 112674.	4.6	13
33	Adaptive Data Screening for Multi-Angle Polarimetric Aerosol and Ocean Color Remote Sensing Accelerated by Deep Learning. Frontiers in Remote Sensing, 2021, 2, .	1.3	13
34	Sense size-dependent dust loading and emission from space using reflected solar and infrared spectral measurements: An observation system simulation experiment. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8233-8254.	1.2	12
35	The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) airborne field campaign. Earth System Science Data, 2020, 12, 2183-2208.	3.7	10
36	Assessing remote polarimetric measurement sensitivities to aerosol emissions using the geos-chem adjoint model. Atmospheric Measurement Techniques, 2013, 6, 3441-3457.	1.2	9

XIAOGUANG XU

#	Article	IF	CITATIONS
37	A pilot study of shortwave spectral fingerprints of smoke aerosols above liquid clouds. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221, 38-50.	1.1	9
38	Passive Remote Sensing of Aerosol Height. , 2018, , 1-22.		8
39	UNL-VRTM, A Testbed for Aerosol Remote Sensing: Model Developments and Applications. Springer Series in Light Scattering, 2019, , 1-69.	1.8	8
40	Can multi-angular polarimetric measurements in the oxygen-A and B bands improve the retrieval of aerosol vertical distribution?. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 270, 107679.	1.1	7
41	Hourly Mapping of the Layer Height of Thick Smoke Plumes Over the Western U.S. in 2020 Severe Fire Season. Frontiers in Remote Sensing, 2021, 2, .	1.3	6
42	Constraining Aerosol Phase Function Using Dualâ€View Geostationary Satellites. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035209.	1.2	3
43	Direct Retrieval of NO ₂ Vertical Columns from UV-Vis (390-495 nm) Spectral Radiances Using a Neural Network. Journal of Remote Sensing, 2022, 2022, .	3.2	2
44	An algorithm for simultaneous inversion of aerosol properties and surface reflectance from airborne GeoTASO hyperspectral data. , 2015, , .		1
45	Wavelet analysis of quasi-3-year temperature oscillations in China in last 50 years, and predicted changes in the next 20 years. Sciences in Cold and Arid Regions, 2013, 5, 755.	0.1	0
46	An algorithm for hyperspectral remote sensing of aerosols. , 2016, , .		0
47	Using AIRS hyperspectral observations to optimize dust refractive index in infrared spectrum. , 2019, , .		0
48	Detecting Layer Height of Smoke and Dust Aerosols Over Vegetated Land and Water Surfaces via Oxygen Absorption Bands. , 2020, , .		0