

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195343/publications.pdf Version: 2024-02-01

\\/ELLI

Later of Control Low Medule and Medules Francescule of Comments of Transmission Intern		
Notion of Control-Law Module and Modular Framework of Cooperative Transportation Using Multiple Nonholonomic Robotic Agents With Physical Rigid-Formation-Motion Constraints. IEEE Transactions on Cybernetics, 2016, 46, 1242-1248.	9.5	90
Stability Analysis of Swarms With General Topology. IEEE Transactions on Systems, Man, and Cybernetics, 2008, 38, 1084-1097.	5.0	69
Inified Cooperative Control of Multiple Agents on a Sphere for Different Spherical Patterns. IEEE Transactions on Automatic Control, 2014, 59, 1283-1289.	5.7	55
Analysis of Flocking of Cooperative Multiple Inertial Agents via A Geometric Decomposition Technique. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44, 1611-1623.	9.3	39
Dnline and Unsupervised Anomaly Detection for Streaming Data Using an Array of Sliding Windows and PDDs. IEEE Transactions on Cybernetics, 2021, 51, 2284-2289.	9.5	22
The Designated Convergence Rate Problem of Consensus or Flocking of Double-Integrator Agents With General Non-Equal Velocity and Position Couplings. IEEE Transactions on Automatic Control, 2017, 62, 412-418.	5.7	20
Escape Analysis on the Confinement-Escape Problem of a Defender Against an Evader Escaping From a Circular Region. IEEE Transactions on Cybernetics, 2016, 46, 2166-2172.	9.5	18
The Constrained Rayleigh Quotient With a General Orthogonality Constraint and an Eigen-Balanced aplacian Matrix: The Greatest Lower Bound and Applications in Cooperative Control Problems. IEEE Fransactions on Automatic Control, 2018, 63, 4024-4031.	5.7	13
Motion patterns and phase-transition of a defender–intruder problem and optimal interception strategy of the defender. Communications in Nonlinear Science and Numerical Simulation, 2015, 27, 294-301.	3.3	11
The Designated Convergence Rate Problems of Consensus or Flocking of Double-Integrator Agents With General Nonequal Velocity and Position Couplings: Further Results and Patterns of Convergence Rate Contours. IEEE Transactions on Cybernetics, 2017, 47, 1325-1335.	9.5	8
Inified Generic Geometric-Decompositions for Consensus or Flocking Systems of Cooperative Agents and Fast Recalculations of Decomposed Subsystems Under Topology-Adjustments. IEEE Transactions on Cybernetics, 2016, 46, 1463-1470.	9.5	6
Formation-Preserving Properties of Cooperative Kinematic Agents With or Without External nfluence of Target Attraction. IEEE Transactions on Automatic Control, 2018, 63, 1737-1744.	5.7	3
Kinematic Characterization of a Target-Defense Problem With an Interception and Expelling Strategy. EEE Transactions on Cybernetics, 2019, 49, 3607-3615.	9.5	2
Design of an Accurate Yet Low-Cost Distributed Module for Vehicular Relative Positioning: Hardware Prototype Design and Algorithms. IEEE Transactions on Vehicular Technology, 2019, 68, 4494-4501.	6.3	1
Cooperative control of double-integrator agents with heterogeneous control gains: Exponential consensus conditions and the heterogeneity-metric. Automatica, 2021, 129, 109593.	5.0	1
Exponential Consensus of Coupled Inertial Agents With the Fully Heterogeneous and Fully Variable Setting of the Control Gains. IEEE Transactions on Cybernetics, 2022, 52, 887-898.	9.5	0
A Riemannian nonmonotone spectral method for self-adjoint tangent vector field. Applied Numerical Mathematics, 2021, 161, 208-217.	2.1	0
	Intitle Ronholonomic Robotic Agents With Physical Rigid-Formation-Motion Constraints. IEEE transactions on Cybernetics, 2016, 41242-1248. tability Analysis of Swarms With General Topology. IEEE Transactions on Systems, Man, and ybernetics, 2008, 38, 1084-1097. Inified Cooperative Control of Multiple Agents on a Sphere for Different Spherical Patterns. IEEE ransactions on Automatic Control, 2014, 59, 1283-1289. nalysis of Flocking of Cooperative Multiple Inertial Agents via A Geometric Decomposition echnique. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44, 1611-1623. hultine and Unsupervised Anomaly Detection for Streaming Data Using an Array of Silding Windows nd PDDs. IEEE Transactions on Cybernetics, 2021, 51, 2284-2289. he Designated Convergence Rate Problem of Consensus or Flocking of Double-Integrator Agents with General Non-Equal Velocity and Position Couplings. IEEE Transactions on Automatic Control, 017, 62, 412-418. scape Analysis on the Confinement-Escape Problem of a Defender Against an Evader Escaping From a facular Region. IEEE Transactions on Cybernetics, 2016, 46, 2166-2172. he Constrained Rayleigh Quotient With a General Orthogonality Constraint and an Eigen-Balanced palcani Matrix. The Greatest Lower Bound and Applications in Cooperative Control Problems. IEEE fransactions on Automatic Control, 2018, 63, 4024-4031. hottomatic Control, 2018, 63, 4024-4031. hottomate defender, Communications in Nonlinear Science and Numer	Jultiple Nonholonomic Robotic Agents With Physical Right Formation Motion Constraints. IEEE 9.5 tability Analysis of Swarms With Ceneral Topology. IEEE Transactions on Systems, Man, and 6.0 Infield Cooperative Control of Multiple Agents on a Sphere for Different Spherical Patterns. IEEE 5.7 ransactions on Automatic Control, 2014, 59, 1283-1289. 5.7 nalysis of Flocking of Cooperative Multiple Inertial Agents via A Geometric Decomposition 9.3 echnique. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44, 1611-1623. 9.3 phine and Unsupervised Anomaly Detection for Streaming Data Using an Array of Silding Windows 9.5 nd PDDs. IEEE Transactions on Cybernetics, 2021, 51, 2284-2289. 9.5 he Designated Convergence Rate Problem of Consensus or Flocking of Double-Integrator Agents 5.7 vith Ceneral Mon-Equal Velocity and Position Couplings. IEEE Transactions on Automatic Control, 017, 62, 412-418. 9.5 scape Analysis on the Confinement Escape Problem of a Defender Against an Evader Escaping From a reasocition on Automatic Control, 2018, 63, 2024-4031. 9.5 he Constrained Rayleigh Quotient With a Ceneral Orthogonality Constraint and an Eigen-Balanced palacian Matrix: The Greatest Lower Bound and Applications in Cooperative Control Problems. IEEE Transactions on Cybernetics, 2017, 41, 2213-233. 9.5 heternal Nonequal Welcity and Position Couplings: Further Results