
Roberto Solano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/219528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 2007, 448, 666-671.	13.7	1,974
2	ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant Defense[W]. Plant Cell, 2003, 15, 165-178.	3.1	1,187
3	JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis[W]. Plant Cell, 2004, 16, 1938-1950.	3.1	1,165
4	Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes and Development, 1998, 12, 3703-3714.	2.7	1,144
5	A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes and Development, 2001, 15, 2122-2133.	2.7	1,087
6	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	13.5	973
7	Activation of the Ethylene Gas Response Pathway in Arabidopsis by the Nuclear Protein ETHYLENE-INSENSITIVE3 and Related Proteins. Cell, 1997, 89, 1133-1144.	13.5	928
8	The <i>Arabidopsis</i> bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses Â. Plant Cell, 2011, 23, 701-715.	3.1	906
9	NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature, 2010, 464, 788-791.	13.7	832
10	(+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology, 2009, 5, 344-350.	3.9	822
11	ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis. Plant Cell, 2007, 19, 1665-1681.	3.1	755
12	Constitutive expression of ETHYLENE-RESPONSE-FACTOR1inArabidopsisconfers resistance to several necrotrophic fungi. Plant Journal, 2002, 29, 23-32.	2.8	689
13	DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2367-2372.	3.3	585
14	A Central Regulatory System Largely Controls Transcriptional Activation and Repression Responses to Phosphate Starvation in Arabidopsis. PLoS Genetics, 2010, 6, e1001102.	1.5	583
15	Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant Journal, 2012, 71, 699-711.	2.8	498
16	<i>Arabidopsis</i> Basic Helix-Loop-Helix Transcription Factors MYC2, MYC3, and MYC4 Regulate Glucosinolate Biosynthesis, Insect Performance, and Feeding Behavior Â. Plant Cell, 2013, 25, 3117-3132.	3.1	453
17	Molecular players regulating the jasmonate signalling network. Current Opinion in Plant Biology, 2005, 8, 532-540.	3.5	430
18	Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2992-2997.	3.3	380

ROBERTO SOLANO

#	Article	IF	CITATIONS
19	Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant Journal, 2000, 24, 559-567.	2.8	366
20	Structural Basis for DNA Binding Specificity by the Auxin-Dependent ARF Transcription Factors. Cell, 2014, 156, 577-589.	13.5	348
21	The jasmonate pathway: the ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 2009, 12, 539-547.	3.5	298
22	A Mutant of the Arabidopsis Phosphate Transporter PHT1;1 Displays Enhanced Arsenic Accumulation. Plant Cell, 2007, 19, 1123-1133.	3.1	295
23	Redundancy and specificity in jasmonate signalling. Current Opinion in Plant Biology, 2016, 33, 147-156.	3.5	295
24	PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 Is a Plant-Specific SEC12-Related Protein That Enables the Endoplasmic Reticulum Exit of a High-Affinity Phosphate Transporter in Arabidopsis Â[W]. Plant Cell, 2005, 17, 3500-3512.	3.1	285
25	The ZIM domain mediates homo―and heteromeric interactions between Arabidopsis JAZ proteins. Plant Journal, 2009, 59, 77-87.	2.8	257
26	JAZ repressors set the rhythm in jasmonate signaling. Current Opinion in Plant Biology, 2008, 11, 486-494.	3.5	224
27	The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLoS Biology, 2014, 12, e1001792.	2.6	223
28	Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant Journal, 2010, 61, 698-712.	2.8	216
29	Design of a bacterial speck resistant tomato by <scp>CRISPR</scp> /Cas9â€mediated editing of <i>SI<scp>JAZ</scp>2</i> . Plant Biotechnology Journal, 2019, 17, 665-673.	4.1	215
30	Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida EMBO Journal, 1995, 14, 1773-1784.	3.5	208
31	Interactions Between Signaling Compounds Involved in Plant Defense. Journal of Plant Growth Regulation, 2003, 22, 82-98.	2.8	205
32	Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nature Chemical Biology, 2018, 14, 480-488.	3.9	194
33	An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nature Chemical Biology, 2018, 14, 171-178.	3.9	183
34	Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acidâ€signalling module. FEBS Journal, 2009, 276, 4682-4692.	2.2	181
35	Mutations atCRE1impair cytokinin-induced repression of phosphate starvation responses inArabidopsis. Plant Journal, 2002, 32, 353-360.	2.8	165
36	Arabidopsis Homologs of a c-Jun Coactivator Are Present Both in Monomeric Form and in the COP9 Complex, and Their Abundance Is Differentially Affected by the Pleiotropic cop/det/fus Mutations. Plant Cell, 1998, 10, 1779-1790.	3.1	156

#	Article	IF	CITATIONS
37	Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5995-E6004.	3.3	154
38	Repression of Jasmonate-Dependent Defenses by Shade Involves Differential Regulation of Protein Stability of MYC Transcription Factors and Their JAZ Repressors in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 1967-1980.	3.1	152
39	Integrated multi-omics framework of the plant response to jasmonic acid. Nature Plants, 2020, 6, 290-302.	4.7	145
40	Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Frontiers in Plant Science, 2013, 4, 72.	1.7	144
41	Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nature Structural and Molecular Biology, 2011, 18, 395-400.	3.6	131
42	The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake. Current Biology, 2016, 26, 286-295.	1.8	127
43	<scp>JAZ</scp> 2 controls stomata dynamics during bacterial invasion. New Phytologist, 2017, 213, 1378-1392.	3.5	124
44	Modulation of Plant Defenses by Ethylene. Journal of Plant Growth Regulation, 2007, 26, 160-177.	2.8	123
45	Improved proteinâ€binding microarrays for the identification of DNAâ€binding specificities of transcription factors. Plant Journal, 2011, 66, 700-711.	2.8	117
46	Mitochondrial β-Cyanoalanine Synthase Is Essential for Root Hair Formation in <i>Arabidopsis thaliana</i> Â. Plant Cell, 2010, 22, 3268-3279.	3.1	110
47	A Single JAZ Repressor Controls the Jasmonate Pathway in Marchantia polymorpha. Molecular Plant, 2019, 12, 185-198.	3.9	107
48	The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953.	2.8	104
49	A MYB/ZML Complex Regulates Wound-Induced Lignin Genes in Maize. Plant Cell, 2015, 27, 3245-3259.	3.1	104
50	bHLH003, bHLH013 and bHLH017 Are New Targets of JAZ Repressors Negatively Regulating JA Responses. PLoS ONE, 2014, 9, e86182.	1.1	104
51	A protein phosphatase 2A catalytic subunit is a negative regulator of abscisic acid signalling ¹ . Plant Journal, 2007, 51, 763-778.	2.8	102
52	The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. Plant Journal, 2016, 85, 134-147.	2.8	101
53	Distinct and conserved transcriptomic changes during nematodeâ€induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. New Phytologist, 2013, 197, 1276-1290.	3.5	98
54	An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles. Plant Physiology, 2015, 168, 598-614.	2.3	98

ROBERTO SOLANO

#	Article	IF	CITATIONS
55	FILAMENTOUS FLOWER Is a Direct Target of JAZ3 and Modulates Responses to Jasmonate. Plant Cell, 2015, 27, 3160-3174.	3.1	93
56	The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato. Frontiers in Plant Science, 2017, 8, 1343.	1.7	89
57	Ethylene gas: perception, signaling and response. Current Opinion in Plant Biology, 1998, 1, 393-398.	3.5	85
58	Coordination of Chloroplast Development through the Action of the GNC and GLK Transcription Factor Families. Plant Physiology, 2018, 178, 130-147.	2.3	85
59	The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. Plant Physiology, 2015, 169, 1405-1417.	2.3	76
60	Rational design of a ligand-based antagonist of jasmonate perception. Nature Chemical Biology, 2014, 10, 671-676.	3.9	74
61	Jasmonate-Related MYC Transcription Factors Are Functionally Conserved in <i>Marchantia polymorpha</i> . Plant Cell, 2019, 31, 2491-2509.	3.1	73
62	An Ancient COI1-Independent Function for Reactive Electrophilic Oxylipins in Thermotolerance. Current Biology, 2020, 30, 962-971.e3.	1.8	68
63	CUL3 ^{BPM} E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6205-6215.	3.3	67
64	Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes. Plant and Cell Physiology, 2016, 58, pcw187.	1.5	66
65	PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. Nature Communications, 2019, 10, 4005.	5.8	65
66	The transcription factor bZIP14 regulates the TCA cycle in the diatom <i>Phaeodactylum tricornutum</i> . EMBO Journal, 2017, 36, 1559-1576.	3.5	64
67	Potato CYCLING DOF FACTORÂ1 and its lncRNA counterpart <i>StFLORE</i> link tuber development and drought response. Plant Journal, 2021, 105, 855-869.	2.8	64
68	The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.	1.5	60
69	Arabidopsis SWC4 Binds DNA and Recruits the SWR1 Complex to Modulate Histone H2A.Z Deposition at Key Regulatory Genes. Molecular Plant, 2018, 11, 815-832.	3.9	60
70	How Microbes Twist Jasmonate Signaling around Their Little Fingers. Plants, 2016, 5, 9.	1.6	58
71	Protein intrinsic disorder in plants. Frontiers in Plant Science, 2013, 4, 363.	1.7	57
72	Genome-Wide Analysis of Protein Disorder in Arabidopsis thaliana: Implications for Plant Environmental Adaptation. PLoS ONE, 2013, 8, e55524.	1.1	55

#	Article	IF	CITATIONS
73	The <i>Solanum lycopersicum</i> Zinc Finger2 Cysteine-2/Histidine-2 Repressor-Like Transcription Factor Regulates Development and Tolerance to Salinity in Tomato and Arabidopsis Â. Plant Physiology, 2014, 164, 1967-1990.	2.3	54
74	Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by L-AFL proteins in Arabidopsis seed Plant Physiology, 2016, 171, pp.00034.2016.	2.3	53
75	Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance. PLoS ONE, 2018, 13, e0200566.	1.1	53
76	Bacterial chemoattraction towards jasmonate plays a role in the entry of <i>Dickeya dadantii</i> through wounded tissues. Molecular Microbiology, 2009, 74, 662-671.	1.2	50
77	An Evolutionarily Ancient Immune System Governs the Interactions between Pseudomonas syringae and an Early-Diverging Land Plant Lineage. Current Biology, 2019, 29, 2270-2281.e4.	1.8	50
78	Heart-Rate Deflection Point and the Second Heart-Rate Variability Threshold during Running Exercise in Trained Boys. Pediatric Exercise Science, 2007, 19, 192-204.	0.5	48
79	A rationally designed JAZ subtype-selective agonist of jasmonate perception. Nature Communications, 2018, 9, 3654.	5.8	47
80	The JAâ€pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. Plant Journal, 2020, 102, 138-152.	2.8	47
81	The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. Journal of Experimental Botany, 2017, 68, 4529-4543.	2.4	46
82	A Single Residue Substitution Causes a Switch from the Dual DNA Binding Specificity of Plant Transcription Factor MYB.Ph3 to the Animal c-MYB Specificity. Journal of Biological Chemistry, 1997, 272, 2889-2895.	1.6	44
83	The fungal phytotoxin lasiojasmonate A activates the plant jasmonic acid pathway. Journal of Experimental Botany, 2018, 69, 3095-3102.	2.4	41
84	Organization of repeated sequences in species of the genus Avena. Theoretical and Applied Genetics, 1992, 83, 602-607.	1.8	39
85	Isolation of RNA from laserâ€captureâ€microdissected giant cells at early differentiation stages suitable for differential transcriptome analysis. Molecular Plant Pathology, 2009, 10, 523-535.	2.0	39
86	Reactome Array: Forging a Link Between Metabolome and Genome. Science, 2009, 326, 252-257.	6.0	39
87	Characterization of the cytokinin-responsive transcriptome in rice. BMC Plant Biology, 2016, 16, 260.	1.6	38
88	Novel players fine-tune plant trade-offs. Essays in Biochemistry, 2015, 58, 83-100.	2.1	38
89	Identification of plant transcription factor target sequences. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 21-30.	0.9	36
90	Isolation of Natural Fungal Pathogens from Marchantia polymorpha Reveals Antagonism between Salicylic Acid and Jasmonate during Liverwort–Fungus Interactions. Plant and Cell Physiology, 2020, 61, 265-275.	1.5	33

ROBERTO SOLANO

#	Article	IF	CITATIONS
91	Target Validation of Plant microRNAs. Methods in Molecular Biology, 2011, 732, 187-208.	0.4	25
92	Characterizing the involvement of <i>FaMADS9</i> in the regulation of strawberry fruit receptacle development. Plant Biotechnology Journal, 2020, 18, 929-943.	4.1	25
93	MYB.Ph3 transcription factor from Petunia hybrida induces similar DNA-bending/distortions on its two types of binding site. Plant Journal, 1995, 8, 673-682.	2.8	23
94	<i>Marchantia polymorpha</i> model reveals conserved infection mechanisms in the vascular wilt fungal pathogen <i>Fusarium oxysporum</i> . New Phytologist, 2022, 234, 227-241.	3.5	22
95	Omega hydroxylated JA-Ile is an endogenous bioactive jasmonate that signals through the canonical jasmonate signaling pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158520.	1.2	21
96	Redox feedback regulation of ANAC089 signaling alters seed germination and stress response. Cell Reports, 2021, 35, 109263.	2.9	20
97	Conserved secreted effectors contribute to endophytic growth and multihost plant compatibility in a vascular wilt fungus. Plant Cell, 2022, 34, 3214-3232.	3.1	20
98	Genomeâ€wide identification of small RNA targets based on target enrichment and microarray hybridizations. Plant Journal, 2009, 59, 840-850.	2.8	18
99	DNA features beyond the transcription factor binding site specify target recognition by plant MYC2-related bHLH proteins. Plant Communications, 2021, 2, 100232.	3.6	18
100	Pull-Down Analysis of Interactions Among Jasmonic Acid Core Signaling Proteins. Methods in Molecular Biology, 2013, 1011, 159-171.	0.4	15
101	A nonâ€ <scp>DNA</scp> â€binding activity for the <scp>ATHB</scp> 4 transcription factor in the control of vegetation proximity. New Phytologist, 2017, 216, 798-813.	3.5	14
102	A small molecule antagonizes jasmonic acid perception and auxin responses in vascular and nonvascular plants. Plant Physiology, 2021, 187, 1399-1413.	2.3	13
103	A new functional JAZ degron sequence in strawberry JAZ1 revealed by structural and interaction studies on the COI1–JA-Ile/COR–JAZs complexes. Scientific Reports, 2020, 10, 11310.	1.6	12
104	An evolutionarily ancient fatty acid desaturase is required for the synthesis of hexadecatrienoic acid, which is the main source of the bioactive jasmonate in <i>Marchantia polymorpha</i> . New Phytologist, 2022, 233, 1401-1413.	3.5	12
105	Interactions of JAZ Repressors with Anthocyanin Biosynthesis-Related Transcription Factors of Fragaria × ananassa. Agronomy, 2020, 10, 1586.	1.3	9
106	SARS-CoV-2 Fears Green: The Chlorophyll Catabolite Pheophorbide A Is a Potent Antiviral. Pharmaceuticals, 2021, 14, 1048.	1.7	8
107	High-Throughput Analysis of Protein-DNA Binding Affinity. Methods in Molecular Biology, 2014, 1062, 697-709.	0.4	7
108	Bacterial chemoattraction towards jasmonate plays a role in the entry of <i>Dickeya dadantii</i> through wounded tissues. Molecular Microbiology, 2009, 74, 1543-1543.	1.2	1