Maria Antonietta Zoroddu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The essential metals for humans: a brief overview. Journal of Inorganic Biochemistry, 2019, 195, 120-129.	3.5	533
2	Medical Uses of Silver: History, Myths, and Scientific Evidence. Journal of Medicinal Chemistry, 2019, 62, 5923-5943.	6.4	186
3	Toxicity of Nanoparticles. Current Medicinal Chemistry, 2014, 21, 3837-3853.	2.4	179
4	An updated overview on metal nanoparticles toxicity. Seminars in Cancer Biology, 2021, 76, 17-26.	9.6	97
5	Environmental barium: potential exposure and health-hazards. Archives of Toxicology, 2021, 95, 2605-2612.	4.2	68
6	Molecular mechanisms in nickel carcinogenesis: modeling Ni(II) binding site in histone H4 Environmental Health Perspectives, 2002, 110, 719-723.	6.0	51
7	Copper and nickel binding in multi-histidinic peptide fragments. Journal of Inorganic Biochemistry, 2009, 103, 1214-1220.	3.5	45
8	Kill or cure: Misuse of chelation therapy for human diseases. Coordination Chemistry Reviews, 2015, 284, 278-285.	18.8	44
9	Tungsten-induced carcinogenesis in human bronchial epithelial cells. Toxicology and Applied Pharmacology, 2015, 288, 33-39.	2.8	43
10	Competition between Cd(II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. Coordination Chemistry Reviews, 2016, 327-328, 55-69.	18.8	39
11	A Speciation Study on the Perturbing Effects of Iron Chelators on the Homeostasis of Essential Metal Ions. PLoS ONE, 2015, 10, e0133050.	2.5	37
12	Chemical features of in use and in progress chelators for iron overload. Journal of Trace Elements in Medicine and Biology, 2016, 38, 10-18.	3.0	37
13	Metal Toxicity and Speciation: A Review. Current Medicinal Chemistry, 2021, 28, 7190-7208.	2.4	37
14	Nickel binding sites in histone proteins: Spectroscopic and structural characterization. Coordination Chemistry Reviews, 2013, 257, 2737-2751.	18.8	34
15	Gold nanoparticles and cancer: Detection, diagnosis and therapy. Seminars in Cancer Biology, 2021, 76, 27-37.	9.6	34
16	The binding of Ni(ii) and Cu(ii) with the N-terminal tail of the histone H4. Dalton Transactions RSC, 2002, , 458-465.	2.3	31
17	Copper(ii) binding to Cap43 protein fragments. Dalton Transactions, 2008, , 6127.	3.3	31
18	Mn(ii) and Zn(ii) interactions with peptide fragments from Parkinson's disease genes. Dalton Transactions, 2012, 41, 4378.	3.3	31

#	Article	IF	CITATIONS
19	Interaction of divalent cations with peptide fragments from Parkinson's disease genes. Dalton Transactions, 2013, 42, 5964-5974.	3.3	30
20	A new bis-3-hydroxy-4-pyrone as a potential therapeutic iron chelating agent. Effect of connecting and side chains on the complex structures and metal ion selectivity. Journal of Inorganic Biochemistry, 2014, 141, 132-143.	3.5	30
21	Coordination Environment of Cu(II) Ions Bound to N-Terminal Peptide Fragments of Angiogenin Protein. International Journal of Molecular Sciences, 2016, 17, 1240.	4.1	29
22	Multidimensional NMR spectroscopy for the study of histone H4–Ni(ii) interaction. Dalton Transactions, 2007, , 379-384.	3.3	28
23	NMR studies of zinc binding in a multi-histidinic peptide fragment. Dalton Transactions, 2010, 39, 1282-1294.	3.3	27
24	An NMR study on nickel binding sites in Cap43 protein fragments. Dalton Transactions, 2009, , 5523.	3.3	26
25	Ni(<scp>ii</scp>) binding to the 429–460 peptide fragment from human Toll like receptor (hTLR4): a crucial role for nickel-induced contact allergy?. Dalton Transactions, 2014, 43, 2764-2771.	3.3	26
26	A new tripodal kojic acid derivative for iron sequestration: Synthesis, protonation, complex formation studies with Fe3+, Al3+, Cu2+ and Zn2+, and in vivo bioassays. Journal of Inorganic Biochemistry, 2019, 193, 152-165.	3.5	22
27	Nickel binding to histone H4. Dalton Transactions, 2010, 39, 787-793.	3.3	21
28	Manganese and cobalt binding in a multi-histidinic fragment. Dalton Transactions, 2013, 42, 16293.	3.3	21
29	Metal complexes of 2,4-Diamino-5-3(3′,4′,5′-trimethoxybenzyl)pyrimidine, (trimethoprim). Part I. Synthes and crystal structure of CoCl2(trimethoprim)2. Inorganica Chimica Acta, 1983, 77, L213-L214.	is 2.4	20
30	Metal complexes of 2,4-diamino-5-(3′,4′,5′-trimethoxybenzyl)pyrimidine (trimethoprim) and 2,4-diamino-5-(p-chlorophenyl)-6-ethylpyrimidine (pyrimethamine). Part III. Syntheses and x-ray structures of [Rh2(O2CCH3)4(trimethoprim)2]·2C6H6·CH3OH and [Rh2(O2CCH3)4(pyrimethamine)2]. Inorganica Chimica Acta, 1987, 128, 179-183.	2.4	19
31	Ni(II) interaction with a peptide model of the human TLR4 ectodomain. Journal of Trace Elements in Medicine and Biology, 2017, 44, 151-160.	3.0	19
32	The Involvement of Amino Acid Side Chains in Shielding the Nickel Coordination Site: An NMR Study. Molecules, 2013, 18, 12396-12414.	3.8	18
33	Fluoroquinolones: A micro-species equilibrium in the protonation of amphoteric compounds. European Journal of Pharmaceutical Sciences, 2016, 93, 380-391.	4.0	18
34	Tungsten or Wolfram: Friend or Foe?. Current Medicinal Chemistry, 2018, 25, 65-74.	2.4	18
35	Metal complexes of 2,4-diamino-5-(3′,4′,5′-trimethoxybenzyl)pyrimidine (trimethoprim) Part IV. Synthesis and X-ray structure of [CuCl(μ-OCH3)(trimethoprim)]2. Inorganica Chimica Acta, 1990, 171, 229-233.	2.4	16
36	Manganism and Parkinson's disease: Mn(<scp>ii</scp>) and Zn(<scp>ii</scp>) interaction with a 30-amino acid fragment. Dalton Transactions, 2016, 45, 5151-5161.	3.3	16

#	Article	IF	CITATIONS
37	Zinc(II) and copper(II) complexes with hydroxypyrone iron chelators. Journal of Inorganic Biochemistry, 2015, 151, 94-106.	3.5	15
38	New strong extrafunctionalizable tris(3,4-HP) and bis(3,4-HP) metal sequestering agents: synthesis, solution and <i>in vivo</i> metal chelation. Dalton Transactions, 2019, 48, 16167-16183.	3.3	15
39	An NMR study on the 6,6′-(2-(diethylamino)ethylazanediyl)bis(methylene)bis(5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) interaction with AlIII and ZnII ions. Journal of Inorganic Biochemistry, 2015, 148, 69-77.	3.5	14
40	<i>para</i> -Aminosalicylic acid in the treatment of manganese toxicity. Complexation of Mn ²⁺ with 4-amino-2-hydroxybenzoic acid and its <i>N</i> -acetylated metabolite. New Journal of Chemistry, 2018, 42, 8035-8049.	2.8	14
41	Manganese binding to antioxidant peptides involved in extreme radiation resistance in Deinococcus radiodurans. Journal of Inorganic Biochemistry, 2016, 164, 49-58.	3.5	13
42	A new tripodal-3-hydroxy-4-pyridinone for iron and aluminium sequestration: synthesis, complexation and <i>in vivo</i> studies. New Journal of Chemistry, 2018, 42, 8050-8061.	2.8	13
43	Equilibrium studies of new bis-hydroxypyrone derivatives with Fe3+, Al3+, Cu2+ and Zn2+. Journal of Inorganic Biochemistry, 2018, 189, 103-114.	3.5	11
44	Rh(I) Complexes in Catalysis: A Five-Year Trend. Molecules, 2021, 26, 2553.	3.8	10
45	Exploring the Specificity of Rationally Designed Peptides Reconstituted from the Cell-Free Extract of <i>Deinococcus radiodurans</i> toward Mn(II) and Cu(II). Inorganic Chemistry, 2020, 59, 4661-4684.	4.0	9
46	Synthesis and crystal structure of bis(p-amino-benzoate)2,2′di-pyridylcopper(II)emiaquo. Inorganica Chimica Acta, 1984, 89, L1-L2.	2.4	8
47	Interaction of Cu(II) and Ni(II) with Ypk9 Protein Fragment <i>via</i> NMR Studies. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	8
48	Interaction of a chelating agent, 5-hydroxy-2-(hydroxymethyl)pyridin-4(1 H)-one, with Al(III), Cu(II) and Zn(II) ions. Journal of Inorganic Biochemistry, 2017, 171, 18-28.	3.5	6
49	Complex formation equilibria of Cu2+ and Zn2+ with Irbesartan and Losartan. European Journal of Pharmaceutical Sciences, 2017, 97, 158-169.	4.0	6
50	Zinc Interactions with a Soluble Mutated Rat Amylin to Mimic Whole Human Amylin: An Experimental and Simulation Approach to Understand Stoichiometry, Speciation and Coordination of the Metal Complexes. Chemistry - A European Journal, 2020, 26, 13072-13084.	3.3	6
51	The Potential Clinical Properties of Magnesium. Current Medicinal Chemistry, 2021, 28, 7295-7311.	2.4	5
52	Metal-chelating properties of carvedilol: an antihypertensive drug with antioxidant activity. Journal of Coordination Chemistry, 2009, 62, 3828-3836.	2.2	4
53	Substituent effects on ionization constants as a predictive tool of coordinating ability. Monatshefte F¼r Chemie, 2016, 147, 719-724.	1.8	4
54	Thermodynamic Study of Oxidovanadium(IV) with Kojic Acid Derivatives: A Multi-Technique Approach. Pharmaceuticals, 2021, 14, 1037.	3.8	4

#	Article	IF	CITATIONS
55	Looking at new ligands for chelation therapy. New Journal of Chemistry, 2018, 42, 8021-8034.	2.8	3
56	Gold Clusters: From the Dispute on a Gold Chair to the Golden Future of Nanostructures. Molecules, 2021, 26, 5014.	3.8	1