Byung-Ok Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/219501/publications.pdf

Version: 2024-02-01

127 papers	2,592 citations	29 h-index	276875 41 g-index
135	135	135	3993 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Charcot-Marie-Tooth disease type 2CC due to <i>NEFH</i> variants causes a progressive, non-length-dependent, motor-predominant phenotype. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 48-56.	1.9	9
2	Variants of <scp>aminoacylâ€ŧRNA</scp> synthetase genes in <scp>Charcotâ€Marieâ€Tooth</scp> disease: A Korean cohort study. Journal of the Peripheral Nervous System, 2022, 27, 38-49.	3.1	7
3	Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Science Advances, 2022, 8, eabl8423.	10.3	71
4	Phenotypic heterogeneity in patients with <i>NEFL</i> related Charcot–Marie–Tooth disease. Molecular Genetics & Genomic Medicine, 2022, 10, e1870.	1.2	8
5	Cytokines secreted by mesenchymal stem cells reduce demyelination in an animal model of Charcot-Marie-Tooth disease. Biochemical and Biophysical Research Communications, 2022, 597, 1-7.	2.1	2
6	Wide Phenotypic Spectrum of PNMHH Patients With p.R941L Mutation in <i>MYH14</i> . Journal of		

#	Article	IF	CITATIONS
19	Gait parameters as tools for analyzing phenotypic alterations of a mouse model of Charcot-Marie-Tooth disease. Animal Cells and Systems, 2021, 25, 11-18.	2.2	6
20	<i>Morc2a</i> p.S87L mutant mice develop peripheral and central neuropathies associated with neuronal DNA damage and apoptosis. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	5
21	Cerebellar White Matter Abnormalities in Charcot–Marie–Tooth Disease: A Combined Volumetry and Diffusion Tensor Imaging Analysis. Journal of Clinical Medicine, 2021, 10, 4945.	2.4	2
22	Intraepineurial fat quantification and cross-sectional area analysis of the sciatic nerve using MRI in Charcot-Marie-Tooth disease type 1A patients. Scientific Reports, 2021, 11, 21535.	3.3	4
23	Farnesol Ameliorates Demyelinating Phenotype in a Cellular and Animal Model of Charcot-Marie-Tooth Disease Type 1A. Current Issues in Molecular Biology, 2021, 43, 2011-2021.	2.4	3
24	Identification of rare coding variants associated with Kawasaki disease by whole exome sequencing. Genomics and Informatics, 2021, 19, e38.	0.8	3
25	Analyzing clinical and genetic aspects of axonal Charcot–Marie-Tooth disease. Journal of Genetic Medicine, 2021, 18, 83-93.	0.2	0
26	Targeted PMP22 TATA-box editing by CRISPR/Cas9 reduces demyelinating neuropathy of Charcot-Marie-Tooth disease type 1A in mice. Nucleic Acids Research, 2020, 48, 130-140.	14.5	23
27	Human HSPB1 mutation recapitulates features of distal hereditary motor neuropathy (dHMN) in Drosophila. Biochemical and Biophysical Research Communications, 2020, 521, 220-226.	2.1	6
28	Paternal gender specificity and mild phenotypes in Charcot–Marie–Tooth type 1A patients with de novo 17p12 rearrangements. Molecular Genetics & Enomic Medicine, 2020, 8, e1380.	1.2	7
29	Wearable hip-assist robot modulates cortical activation during gait in stroke patients: a functional near-infrared spectroscopy study. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 145.	4.6	15
30	A novel histone deacetylase 6 inhibitor improves myelination of Schwann cells in a model of Charcot–Marie–Tooth disease type 1A. British Journal of Pharmacology, 2020, 177, 5096-5113.	5.4	27
31	Lossâ€ofâ€function of EBP50 is a new cause of hereditary peripheral neuropathy: EBP50 functions in peripheral nerve system. Glia, 2020, 68, 1794-1809.	4.9	6
32	<scp>CEP</scp> 41â€mediated ciliary tubulin glutamylation drives angiogenesis through <scp>AURKA</scp> â€dependent deciliation. EMBO Reports, 2020, 21, e48290.	4.5	23
33	Alanyl-tRNA synthetase 1 (AARS1) gene mutation in a family with intermediate Charcot-Marie-Tooth neuropathy. Genes and Genomics, 2020, 42, 663-672.	1.4	18
34	Gene Therapy Options as New Treatment for Inherited Peripheral Neuropathy. Experimental Neurobiology, 2020, 29, 177-188.	1.6	7
35	Fibulin 5, a human Wharton's jelly-derived mesenchymal stem cells-secreted paracrine factor, attenuates peripheral nervous system myelination defects through the Integrin-RAC1 signaling axis. Stem Cells, 2020, , .	3.2	4
36	Fibulin 5, a human Wharton's jelly-derived mesenchymal stem cells-secreted paracrine factor, attenuates peripheral nervous system myelination defects through the Integrin-RAC1 signaling axis. Stem Cells, 2020, 38, 1578-1593.	3.2	9

#	Article	IF	CITATIONS
37	Short hairpin RNA treatment improves gait in a mouse model of Charcot‑Marie‑Tooth disease type 1A. Molecular Medicine Reports, 2020, 22, 4947-4955.	2.4	О
38	A <i>POLG2</i> Homozygous Mutation in an Autosomal Recessive Epilepsy Family Without		

#	Article	IF	CITATIONS
55	Association of miR-149 polymorphism with onset age and severity in Charcot–Marie–Tooth disease type 1A. Neuromuscular Disorders, 2018, 28, 502-507.	0.6	19
56	Small heat shock protein B3 (<i>HSPB3</i>) mutation in an axonal Charcotâ€Marieâ€Tooth disease family. Journal of the Peripheral Nervous System, 2018, 23, 60-66.	3.1	12
57	Ankle Pathologic Gait Assistance of a Hip Exoskeleton: Simulation and Experiment. IEEE Robotics and Automation Letters, 2018, 3, 2190-2197.	5.1	4
58	Wide phenotypic spectrum in axonal Charcot–Marie–Tooth neuropathy type 2 patients with KIF5A mutations. Genes and Genomics, 2018, 40, 77-84.	1.4	24
59	Application of differentiated human tonsil–derived stem cells to <i>tremblerâ€}</i> i> mice. Muscle and Nerve, 2018, 57, 478-486.	2.2	6
60	A Novel Nonsense Mutation in Leucine-Rich, Glioma-Inactivated-1 Gene as the Underlying Cause of		

#	Article	IF	CITATIONS
73	Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 123.	4.6	43
74	Axonal Charcotâ€Marieâ€Tooth neuropathy concurrent with distal and proximal weakness by translational elongation of the 3′ UTR in <i>NEFH</i> . Journal of the Peripheral Nervous System, 2017, 22, 200-207.	3.1	12
7 5	A Large Dominant Myotonia Congenita Family with a V1293I Mutation in <i>SCN4A</i> . Journal of		

#	Article	IF	CITATIONS
91	Patient fibroblasts-derived induced neurons demonstrate autonomous neuronal defects in adult-onset Krabbe disease. Oncotarget, 2016, 7, 74496-74509.	1.8	26
92	Ultrasonography-guided transplantation facilitates perineural delivery of stem cells. Animal Cells and Systems, 2015, 19, 269-273.	2.2	1
93	A family with axonal sensorimotor polyneuropathy with TUBB3 mutation. Molecular Medicine Reports, 2015, 11, 2729-2734.	2.4	13
94	A novel homozygous MPV17 mutation in two families with axonal sensorimotor polyneuropathy. BMC Neurology, 2015, 15, 179.	1.8	17
95	Overexpression of mutant HSP27 causes axonal neuropathy in mice. Journal of Biomedical Science, 2015, 22, 43.	7.0	31
96	Charcotâ€Marieâ€Tooth Disease Type 4H Resulting from Compound Heterozygous Mutations in <i>FGD4</i> from Nonconsanguineous Korean Families. Annals of Human Genetics, 2015, 79, 460-469.	0.8	7
97	Novel Compound Heterozygous Nonsense <i>PRX</i> Mutations in a Korean Dejerine-Sottas Neuropathy		

#	Article	IF	CITATIONS
109	Comprehensive Analysis to Improve the Validation Rate for Single Nucleotide Variants Detected by Next-Generation Sequencing. PLoS ONE, 2014, 9, e86664.	2.5	20
110	A novel Lys141Thr mutation in small heat shock protein 22 (HSPB8) gene in Charcot–Marie–Tooth disease type 2L. Neuromuscular Disorders, 2013, 23, 656-663.	0.6	39
111	Proximal Dominant Hereditary Motor and Sensory Neuropathy With Proximal Dominance Association With Mutation in the TRK-Fused Gene. JAMA Neurology, 2013, 70, 607.	9.0	37
112	Two de novo mutations of MFN2 associated with early-onset Charcot-Marie-Tooth disease type 2A neuropathy. Genes and Genomics, 2012, 34, 653-661.	1.4	3
113	Two novel mutations of <i><scp>GARS</scp></i> in Korean families with distal hereditary motor neuropathy type V. Journal of the Peripheral Nervous System, 2012, 17, 418-421.	3.1	39
114	Exome sequencing is an efficient tool for genetic screening of Charcot-Marie-Tooth Disease. Human Mutation, 2012, 33, 1610-1615.	2.5	94
115	MPZ mutation in an early-onset Charcot-Marie-Tooth disease type 1B family by genome-wide linkage analysis. International Journal of Molecular Medicine, 2011, 28, 389-96.	4.0	6
116	Two recessive intermediate Charcotâ€Marieâ€Tooth patients with <i>GDAP1</i> mutations. Journal of the Peripheral Nervous System, 2011, 16, 143-146.	3.1	14
117	Inheritance of Charcot–Marie–Tooth disease 1A with rare nonrecurrent genomic rearrangement. Neurogenetics, 2011, 12, 51-58.	1.4	13
118	Compound mutations of PEO1 and TYMP in a progressive external ophthalmoplegia patient with incomplete mitochondrial neurogastrointestinal encephalomyopathy phenotype. Genes and Genomics, 2011, 33, 431-437.	1.4	2
119	A novel Gly137Asp MPZ mutation in a Charcot-Marie-Tooth disease type 1B family. Genes and Genomics, 2011, 33, 659-664.	1.4	1
120	A complex phenotype of peripheral neuropathy, myopathy, hoarseness, and hearing loss is linked to an autosomal dominant mutation in MYH14. Human Mutation, 2011, 32, 669-677.	2.5	48
121	Wide phenotypic variations in Charcot-Marie-Tooth 1A neuropathy with rare copy number variations on 17p12. Animal Cells and Systems, 2011, 15, 301-309.	2.2	2
122	Mutational analysis of whole mitochondrial DNA in patients with MELAS and MERRF diseases. Experimental and Molecular Medicine, 2010, 42, 446.	7.7	22
123	A novel GDAP1 Q218E mutation in autosomal dominant Charcot-Marie-Tooth disease. Journal of Human Genetics, 2008, 53, 360-364.	2.3	52
124	NEFL Pro22Arg mutation in Charcot-Marie-Tooth disease type 1. Journal of Human Genetics, 2008, 53, 936-940.	2.3	34
125	Distal hereditary motor neuropathy in Korean patients with a small heat shock protein 27 mutation. Experimental and Molecular Medicine, 2008, 40, 304.	7.7	31
126	Mutational analysis of PMP22, MPZ, GJB1, EGR2 and NEFL in Korean Charcot-Marie-Tooth neuropathy patients. Human Mutation, 2004, 24, 185-186.	2.5	116

#	Article	IF	CITATIONS
127	Identification and clinical characterization of Charcot-Marie-Tooth disease type 1C patients with LITAF p.G112S mutation. Genes and Genomics, 0 , , .	1.4	2