
Leo Dev Wins K

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2194479/publications.pdf Version: 2024-02-01

LEO DEV WINS K

#	Article	IF	CITATIONS
1	Surface Roughness Prediction using Artificial Neural Network in Hard Turning of AISI H13 Steel with Minimal Cutting Fluid Application. Procedia Engineering, 2014, 97, 205-211.	1.2	54
2	Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review. CIRP Journal of Manufacturing Science and Technology, 2021, 32, 228-248.	4.5	53
3	Effect of tungsten carbide, silicon carbide and graphite particulates on the mechanical and microstructural characteristics of AA 5052 hybrid composites. Ceramics International, 2019, 45, 614-621.	4.8	41
4	Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer. Renewable Energy, 2020, 155, 1165-1172.	8.9	34
5	Integrated ANN-GA Approach For Predictive Modeling And Optimization Of Grinding Parameters With Surface Roughness As The Response. Materials Today: Proceedings, 2018, 5, 12133-12141.	1.8	21
6	Prediction of Dry Sliding Wear Response of AlMg1SiCu/Silicon Carbide/Molybdenum Disulphide Hybrid Composites Using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Response Surface Methodology (RSM). Arabian Journal for Science and Engineering, 2021, 46, 12045-12063.	3.0	21
7	Investigations on the Effect of Tungsten Carbide and Graphite Reinforcements during Spark Erosion Machining of Aluminium Alloy (AA 5052) Hybrid Composite. Silicon, 2018, 10, 2769-2781.	3.3	19
8	Quantitative Analysis of Grinding Wheel Loading Using Image Processing. Procedia Technology, 2016, 25, 885-891.	1.1	18
9	Artificial Neural Network Assisted Sensor Fusion Model for Predicting Surface Roughness During Hard Turning of H13 Steel with Minimal Cutting Fluid Application. , 2014, 5, 2338-2346.		15
10	Optimization of Cutting Parameters and Fluid Application Parameters during Turning of OHNS Steel. Procedia Engineering, 2014, 97, 172-177.	1.2	14
11	Experimental Investigation for the Multi-objective Optimization of Machining Parameters on AISI D2 Steel Using Particle Swarm Optimization Coupled with Artificial Neural Network. Journal of Advanced Manufacturing Systems, 2020, 19, 589-606.	1.0	13
12	Evaluation of the performance during hard turning of OHNS steel with minimal cutting fluid application and its comparison with minimum quantity lubrication. IOP Conference Series: Materials Science and Engineering, 2016, 149, 012021.	0.6	7
13	Simulation of surface milling of hardened AISI4340 steel with minimal fluid application using artificial neural network. Advances in Production Engineering and Management, 2012, 7, 51-60.	1.2	7
14	Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel IOP Conference Series: Materials Science and Engineering, 2016, 149, 012017.	0.6	5
15	Effect of post-reaction ultrasonic treatment on synthesis, microstructural evolution and mechanical behaviour of Al 4043/TiB2 in situ nanocomposites. Arabian Journal for Science and Engineering, 2021, 46, 7521-7531.	3.0	5
16	Optimization of cutting parameters and prediction of surface roughness during hard turning of H13 steel with minimal vegetable oil based cutting fluid application using response surface methodology. IOP Conference Series: Materials Science and Engineering, 2019, 577, 012023.	0.6	3
17	Influence of turning parameters on the machinability of Al6061/ZrB2 & ZrC hybrid in-situ Aluminium Matrix Composite. Australian Journal of Mechanical Engineering, 2023, 21, 1218-1229.	2.1	3
18	Experimental investigation and characterization of <i>in situ</i> synthesized sub micron ZrB ₂ -ZrC particles reinforced hybrid AA6061 aluminium composite. Materials Research Express, 2019, 6, 1050e1.	1.6	2

#	Article	IF	CITATIONS
19	An experimental study on the prediction of grinding wheel dressing intervals by relating wheel loading and surface roughness. International Journal of Abrasive Technology, 2019, 9, 171.	0.2	1
20	Effect of Machining Parameters on Cutting Performance of DSS 2205 and SDSS 2507 Materials During Milling Operation. Journal of Advanced Manufacturing Systems, 0, , 1-16.	1.0	0