Donald A Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2194297/publications.pdf

Version: 2024-02-01

75 papers

10,825 citations

43 h-index 72 g-index

77 all docs

77 docs citations

times ranked

77

10385 citing authors

#	Article	IF	CITATIONS
1	Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions. Climatic Change, 2005, 72, 251-298.	1.7	1,219
2	Role of Land-Surface Changes in Arctic Summer Warming. Science, 2005, 310, 657-660.	6.0	1,186
3	The Circumpolar Arctic vegetation map. Journal of Vegetation Science, 2005, 16, 267-282.	1.1	846
4	Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience, 2016, 9, 312-318.	5.4	527
5	Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment, 2004, 89, 281-308.	4.6	522
6	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	8.1	447
7	Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research, 2003, 108, .	3.3	429
8	Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline. Earth Interactions, 2010, 14, 1-20.	0.7	332
9	High stocks of soil organic carbon in the North American Arctic region. Nature Geoscience, 2008, 1, 615-619.	5 . 4	306
10	Greening of arctic Alaska, 1981–2001. Geophysical Research Letters, 2003, 30, .	1.5	289
11	Climate change and Arctic ecosystems: 1. Vegetation changes north of $55 \hat{A}^\circ N$ between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research, 2003, 108, .	3.3	261
12	Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters, 2012, 7, 015506.	2.2	212
13	Estimating Active-Layer Thickness over a Large Region: Kuparuk River Basin, Alaska, U.S.A Arctic and Alpine Research, 1997, 29, 367.	1.3	210
14	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	1.1	185
15	Plant communities of a tussock tundra landscape in the Brooks Range Foothills, Alaska. Journal of Vegetation Science, 1994, 5, 843-866.	1.1	183
16	Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic. Geophysical Research Letters, 2019, 46, 6681-6689.	1.5	168
17	Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra. Remote Sensing, 2013, 5, 4229-4254.	1.8	167
18	Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies. Permafrost and Periglacial Processes, 2003, 14, 103-123.	1.5	159

#	Article	IF	CITATIONS
19	Cumulative geoecological effects of 62Âyears of infrastructure and climate change in iceâ€rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Global Change Biology, 2014, 20, 1211-1224.	4.2	154
20	Vegetation greening in the canadian arctic related to decadal warming. Journal of Environmental Monitoring, 2009, 11 , 2231.	2.1	148
21	Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. Journal of Geophysical Research, 2003, 108, .	3.3	136
22	Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography. Global Change Biology, 2000, 6, 19-34.	4.2	134
23	A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sensing Letters, 2012, 3, 403-411.	0.6	120
24	The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nature Climate Change, 2013, 3, 195-202.	8.1	119
25	Frost-boil ecosystems: complex interactions between landforms, soils, vegetation and climate. Permafrost and Periglacial Processes, 2004, 15, 171-188.	1.5	110
26	A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sensing of Environment, 2019, 232, 111297.	4.6	108
27	The nature of spatial transitions in the Arctic. Journal of Biogeography, 2004, 31, 1917-1933.	1.4	103
28	Cryogenesis and soil formation along a bioclimate gradient in Arctic North America. Journal of Geophysical Research, 2008, 113 , .	3.3	101
29	Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environmental Research Letters, 2012, 7, 015504.	2.2	101
30	Arctic patternedâ€ground ecosystems: A synthesis of field studies and models along a North American Arctic Transect. Journal of Geophysical Research, 2008, 113, .	3.3	96
31	Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic. Ecosphere, 2012, 3, 1-25.	1.0	84
32	Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global Change Biology, 2019, 25, 2382-2395.	4.2	83
33	Implications of Arctic Sea Ice Decline for the Earth System. Annual Review of Environment and Resources, 2014, 39, 57-89.	5.6	82
34	Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology, 2017, 297, 20-42.	1.1	82
35	Spatial heterogeneity of tundra vegetation response to recent temperature changes. Global Change Biology, 2006, 12, 42-55.	4.2	81
36	Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environmental Research Letters, 2013, 8, 015035.	2.2	81

#	Article	IF	CITATIONS
37	Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environmental Research Letters, 2017, 12, 055003.	2.2	81
38	Biotic controls over spectral reflectance of arctic tundra vegetation. International Journal of Remote Sensing, 2005, 26, 2391-2405.	1.3	60
39	Identification of unrecognized tundra fire events on the north slope of Alaska. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1334-1344.	1.3	58
40	Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environmental Research Letters, 2014, 9, 025004.	2.2	54
41	Controls over intra-seasonal dynamics of AVHRR NDVI for the Arctic tundra in northern Alaska. International Journal of Remote Sensing, 2004, 25, 1547-1564.	1.3	52
42	Vegetation of zonal patternedâ€ground ecosystems along the North America Arctic bioclimate gradient. Applied Vegetation Science, 2011, 14, 440-463.	0.9	51
43	Patterns of Change within a Tundra Landscape: 22-year Landsat NDVI Trends in an Area of the Northern Foothills of the Brooks Range, Alaska. Arctic, Antarctic, and Alpine Research, 2013, 45, 249-260.	0.4	50
44	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	2.7	49
45	Experimental Alteration of Vegetation on Nonsorted Circles: Effects on Cryogenic Activity and Implications for Climate Change in The Arctic. Arctic, Antarctic, and Alpine Research, 2008, 40, 96-103.	0.4	45
46	The regional species richness and genetic diversity of <scp>A</scp> rctic vegetation reflect both past glaciations and current climate. Global Ecology and Biogeography, 2016, 25, 430-442.	2.7	44
47	A map analysis of patternedâ€ground along a North American Arctic Transect. Journal of Geophysical Research, 2008, 113, .	3.3	43
48	Phytomass patterns across a temperature gradient of the North American arctic tundra. Journal of Geophysical Research, 2008, 113, .	3.3	42
49	Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales. Cryosphere, 2021, 15, 2451-2471.	1.5	42
50	Circumpolar Arctic Vegetation Classification. Phytocoenologia, 2018, 48, 181-201.	1.2	40
51	Spatial Heterogeneity of the Temporal Dynamics of Arctic Tundra Vegetation. Geophysical Research Letters, 2018, 45, 9206-9215.	1.5	40
52	The n-factor of nonsorted circles along a climate gradient in Arctic Alaska. Permafrost and Periglacial Processes, 2006, 17, 279-289.	1.5	39
53	Soils and frost boil ecosystems across the North American Arctic Transect. Journal of Geophysical Research, 2008, 113, .	3. 3	39
54	Spatial and Temporal Heterogeneity of Vegetation Properties among Four Tundra Plant Communities at Ivotuk, Alaska, U.S.A. Arctic, Antarctic, and Alpine Research, 2005, 37, 25-33.	0.4	38

#	Article	IF	Citations
55	Spatial characteristics of AVHRRâ€NDVI along latitudinal transects in northern Alaska. Journal of Vegetation Science, 2002, 13, 315-326.	1.1	36
56	Climate Drivers Linked to Changing Seasonality of Alaska Coastal Tundra Vegetation Productivity. Earth Interactions, 2015, 19, 1-29.	0.7	34
57	The Arctic. Bulletin of the American Meteorological Society, 2020, 101, S239-S286.	1.7	29
58	Modeling biogeophysical interactions in nonsorted circles in the Low Arctic. Journal of Geophysical Research, 2008, 113, .	3.3	28
59	Soil Acidity and Exchange Properties of Cryogenic Soils in Arctic Alaska. Soil Science and Plant Nutrition, 2005, 51, 649-653.	0.8	26
60	Simulating nonsorted circle development in arctic tundra ecosystems. Journal of Geophysical Research, 2008, 113, .	3.3	25
61	Regional Patterns and Asynchronous Onset of Ice-Wedge Degradation since the Mid-20th Century in Arctic Alaska. Remote Sensing, 2018, 10, 1312.	1.8	25
62	The Arctic. Bulletin of the American Meteorological Society, 2021, 102, S263-S316.	1.7	23
63	The Circumpolar Arctic vegetation map. , 2005, 16, 267.		23
64	Contrasting Soil Thermal Regimes in the Forest-Tundra Transition Near Nadym, West Siberia, Russia. Permafrost and Periglacial Processes, 2017, 28, 108-118.	1.5	15
65	Landscape impacts of 3Dâ€seismic surveys in the Arctic National Wildlife Refuge, Alaska. Ecological Applications, 2020, 30, e02143.	1.8	15
66	Soils Associated with Biotic Activity on Frost Boils in Arctic Alaska. Soil Science Society of America Journal, 2012, 76, 2265-2277.	1.2	14
67	Climate drivers of Arctic tundra variability and change using an indicators framework. Environmental Research Letters, 2021, 16, 055019.	2.2	14
68	Introduction to special section on Biocomplexity of Arctic Tundra Ecosystems. Journal of Geophysical Research, 2008, 113, .	3.3	10
69	Soil Nitrogen Transformations Associated with Small Patternedâ€Ground Features along a North American Arctic Transect. Permafrost and Periglacial Processes, 2012, 23, 196-206.	1.5	8
70	Spatial characteristics of AVHRR-NDVI along latitudinal transects in northern Alaska., 2002, 13, 315.		8
71	Cumulative impacts of a gravel road and climate change in an ice-wedge-polygon landscape, Prudhoe Bay, Alaska. Arctic Science, 0, , .	0.9	7
72	Vegetation on mesic loamy and sandy soils along a 1700â€km maritime Eurasia Arctic Transect. Applied Vegetation Science, 2019, 22, 150-167.	0.9	5

#	Article	IF	CITATIONS
73	Spatial patterns of arctic tundra vegetation properties on different soils along the Eurasia Arctic Transect, and insights for a changing Arctic. Environmental Research Letters, 2021, 16, 014008.	2.2	5
74	Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska. Arktos, 2018, 4, 1-18.	1.0	4
75	Commentary. Integrating Research, Education, and Traditional Knowledge in Ecology: a Case Study of Biocomplexity in Arctic Ecosystems. Arctic, Antarctic, and Alpine Research, 2010, 42, 379-384.	0.4	3