Jan Pinc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2194090/publications.pdf

Version: 2024-02-01

840119 996533 31 275 11 15 citations h-index g-index papers 32 32 32 177 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The preferential formation of Ni2Al3, Fe2Al5, and Ti2Al5 phases in aluminide systems. Materials Chemistry and Physics, 2022, 280, 125859.	2.0	1
2	The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusion. Journal of Alloys and Compounds, 2022, 906, 164308.	2.8	14
3	Microstructural, mechanical, in vitro corrosion and biological characterization of an extruded Zn-0.8Mg-0.2Sr (wt%) as an absorbable material. Materials Science and Engineering C, 2021, 122, 111924.	3.8	24
4	Influence of Ceramic Particles Character on Resulted Properties of Zinc-Hydroxyapatite/Monetite Composites. Metals, 2021, 11, 499.	1.0	7
5	Influence of the Microstructure of the Initial Material on the Zn Wires Prepared by Direct Extrusion with a Huge Extrusion Ratio. Metals, 2021, 11, 787.	1.0	3
6	Zn–0.8Mg–0.2Sr (wt.%) Absorbable Screws—An In-Vivo Biocompatibility and Degradation Pilot Study on a Rabbit Model. Materials, 2021, 14, 3271.	1.3	10
7	Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloys. Corrosion Science, 2021, 187, 109520.	3.0	20
8	Influence of the pre-exposure of a Zn-0.8Mg-0.2Sr absorbable alloy in bovine serum albumin containing media on its surface changes and their impact on the cytocompatibility of the material. Materials Today Communications, 2021, 28, 102556.	0.9	4
9	Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressing. Materials Science & Diplomaterials Science & Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141809.	2.6	17
10	Thermoactivated Dislocation Motion in Rolled and Extruded Magnesium: Data of the Low-Temperature Acoustic Experiment. Metals, 2021, 11, 1647.	1.0	2
11	A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days. International Journal of Molecular Sciences, 2021, 22, 13444.	1.8	7
12	Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of Porous Ti-Si Alloys with Pore-Forming Agent. Materials, 2020, 13, 5607.	1.3	4
13	Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy – The influence of extrusion parameters on microstructure and mechanical characteristics. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108, 103796.	1.5	26
14	ZnMg0.8Ca0.2 (wt%) biodegradable alloy – The influence of thermal treatment and extrusion on microstructural and mechanical characteristics. Materials Characterization, 2020, 162, 110230.	1.9	21
15	Characterization of a Zn-Ca5(PO4)3(OH) Composite with a High Content of the Hydroxyapatite Particles Prepared by the Spark Plasma Sintering Process. Metals, 2020, 10, 372.	1.0	15
16	Characterization of Newly Developed Zinc Composite with the Content of 8 wt.% of Hydroxyapatite Particles Processed by Extrusion. Materials, 2020, 13, 1716.	1.3	16
17	The Effect of Zinc and Calcium Addition on Magnesium Alloy. Manufacturing Technology, 2020, 20, 668-676.	0.2	2
18	Microstructural characterization and optimization of the ZnMg0.8(CaO)0.26 alloy processed by ball milling and subsequent extrusion. Manufacturing Technology, 2020, 20, 484-491.	0.2	3

#	Article	IF	Citations
19	Rare earth nanofluorides: synthesis using ionic liquids. Reviews in Inorganic Chemistry, 2019, 39, 77-90.	1.8	4
20	Thermal Plasma Spraying as a New Approach for Preparation of Zinc Biodegradable Scaffolds: A Complex Material Characterization. Journal of Thermal Spray Technology, 2019, 28, 826-841.	1.6	13
21	Microstructure and mechanical properties of the potentially biodegradable ternary system Zn-Mg0.8-Ca0.2. Procedia Structural Integrity, 2019, 23, 21-26.	0.3	6
22	ZnMg0.8Ca/Sr0.2 ternary alloys – the influence of the third element on material properties. Procedia Structural Integrity, 2019, 23, 3-8.	0.3	3
23	Zn-Mg Biodegradable Composite: Novel Material with Tailored Mechanical and Corrosion Properties. Materials, 2019, 12, 3930.	1.3	20
24	Preparation of surfaces of composite samples for tip based micro-analyses using ion beam milling. Micron, 2019, 116, 1-4.	1.1	1
25	Influence of Processing on the Microstructure and the Mechanical Properties of Zn/HA8 wt.% Biodegradable Composite. Manufacturing Technology, 2019, 19, 836-841.	0.2	3
26	Zinc-based Degradable Biomaterials - Limitations and Enhancements. Manufacturing Technology, 2019, 19, 632-636.	0.2	1
27	Thermal decomposition of lactates: Towards ultrafine nanostrucured oxides. AIP Conference Proceedings, 2018, , .	0.3	1
28	Fine fluorite nanoparticles synthesized from biomass ash. Journal of Fluorine Chemistry, 2018, 216, 112-117.	0.9	0
29	Preparation of manganese oxide nanoparticles by thermal decomposition of nanostructured manganese carbonate. Chemical Papers, 2017, 71, 1031-1035.	1.0	12
30	Comparison of Mechanical and Superconducting Properties of YBaCuO and GdBaCuO Single Grains Prepared by Top-Seeded Melt Growth. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1773-1778.	0.8	6
31	Tunable rapid microwave synthesis of up-converting hexagonal NaYxGdyYbzEr(1â~'xâ~'yâ~'z)F4 nanocrystals in large quantity. Journal of Fluorine Chemistry, 2015, 178, 56-60.	0.9	9