Marco Fantin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2194037/publications.pdf

Version: 2024-02-01

94433 138484 4,054 58 37 58 h-index citations g-index papers 59 59 59 2155 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies. Journal of the American Chemical Society, 2016, 138, 2411-2425.	13.7	384
2	Electrochemically mediated atom transfer radical polymerization (eATRP). Progress in Polymer Science, 2017, 69, 47-78.	24.7	295
3	Externally controlled atom transfer radical polymerization. Chemical Society Reviews, 2018, 47, 5457-5490.	38.1	290
4	Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems. Macromolecular Rapid Communications, 2019, 40, e1800616.	3.9	208
5	Aqueous RDRP in the Presence of Cu ⁰ : The Exceptional Activity of Cu ^I Confirms the SARA ATRP Mechanism. Macromolecules, 2014, 47, 560-570.	4.8	187
6	Understanding the Fundamentals of Aqueous ATRP and Defining Conditions for Better Control. Macromolecules, 2015, 48, 6862-6875.	4.8	184
7	Atom Transfer Radical Polymerization of Methacrylic Acid: A Won Challenge. Journal of the American Chemical Society, 2016, 138, 7216-7219.	13.7	125
8	Synthesis and Characterization of the Most Active Copper ATRP Catalyst Based on Tris[(4-dimethylaminopyridyl)methyl]amine. Journal of the American Chemical Society, 2018, 140, 1525-1534.	13.7	124
9	Enhancing Mechanically Induced ATRP by Promoting Interfacial Electron Transfer from Piezoelectric Nanoparticles to Cu Catalysts. Macromolecules, 2017, 50, 7940-7948.	4.8	114
10	ATRP in Water: Kinetic Analysis of Active and Super-Active Catalysts for Enhanced Polymerization Control. Macromolecules, 2017, 50, 2696-2705.	4.8	100
11	Harnessing the Interaction between Surfactant and Hydrophilic Catalyst To Control <i>e</i> ATRP in Miniemulsion. Macromolecules, 2017, 50, 3726-3732.	4.8	96
12	Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP). Journal of the American Chemical Society, 2019, 141, 7486-7497.	13.7	95
13	Electrochemically Mediated Reversible Addition–Fragmentation Chain-Transfer Polymerization. Macromolecules, 2017, 50, 7872-7879.	4.8	94
14	Miniemulsion ARGET ATRP via Interfacial and Ion-Pair Catalysis: From ppm to ppb of Residual Copper. Macromolecules, 2017, 50, 8417-8425.	4.8	83
15	RDRP in the presence of CuO: The fate of Cu(I) proves the inconsistency of SET-LRP mechanism. Polymer, 2015, 72, 238-245.	3.8	79
16	Electrochemical approaches to the determination of rate constants for the activation step in atom transfer radical polymerization. Electrochimica Acta, 2016, 222, 393-401.	5.2	76
17	Disproportionation or Combination? The Termination of Acrylate Radicals in ATRP. Macromolecules, 2017, 50, 7920-7929.	4.8	75
18	Control of Dispersity and Grafting Density of Particle Brushes by Variation of ATRP Catalyst Concentration. ACS Macro Letters, 2019, 8, 859-864.	4.8	72

#	Article	IF	CITATIONS
19	Atom Transfer Radical Polymerization with Different Halides (F, Cl, Br, and I): Is the Process "Living―in the Presence of Fluorinated Initiators?. Macromolecules, 2017, 50, 192-202.	4.8	71
20	Electrochemical Atom Transfer Radical Polymerization in Miniemulsion with a Dual Catalytic System. Macromolecules, 2016, 49, 8838-8847.	4.8	66
21	Preparation of Well-Defined Polymers and DNA–Polymer Bioconjugates via Small-Volume eATRP in the Presence of Air. ACS Macro Letters, 2019, 8, 603-609.	4.8	58
22	Electron Transfer Reactions in Atom Transfer Radical Polymerization. Synthesis, 2017, 49, 3311-3322.	2.3	57
23	Electrochemically mediated atom transfer radical polymerization of n-butyl acrylate on non-platinum cathodes. Polymer Chemistry, 2016, 7, 5357-5365.	3.9	53
24	Atom Transfer Radical Polymerization Enabled by Sonochemically Labile Cu-carbonate Species. ACS Macro Letters, 2019, 8, 161-165.	4.8	52
25	Transformation of gels <i>via</i> catalyst-free selective RAFT photoactivation. Polymer Chemistry, 2019, 10, 2477-2483.	3.9	52
26	Sustainable Electrochemicallyâ€Mediated Atom Transfer Radical Polymerization with Inexpensive Nonâ€Platinum Electrodes. Macromolecular Rapid Communications, 2016, 37, 1318-1322.	3.9	50
27	Synergic Effect between Nucleophilic Monomers and Cu(II) Metal–Organic Framework for Visible-Light-Triggered Controlled Photopolymerization. Chemistry of Materials, 2017, 29, 9445-9455.	6.7	50
28	Growing Polymer Brushes from a Variety of Substrates under Ambient Conditions by Cu ^O -Mediated Surface-Initiated ATRP. ACS Applied Materials & Diterfaces, 2019, 11, 27470-27477.	8.0	50
29	Translating Surface-Initiated Atom Transfer Radical Polymerization into Technology: The Mechanism of Cu ⁰ -Mediated SI-ATRP under Environmental Conditions. ACS Macro Letters, 2019, 8, 865-870.	4.8	50
30	Electrochemically mediated ATRP in ionic liquids: controlled polymerization of methyl acrylate in [BMIm][OTf]. Polymer Chemistry, 2018, 9, 646-655.	3.9	48
31	Toward Electrochemically Mediated Reversible Addition–Fragmentation Chain-Transfer (<i>e</i> RAFT) Polymerization: Can Propagating Radicals Be Efficiently Electrogenerated from RAFT Agents?. Macromolecules, 2019, 52, 1479-1488.	4.8	48
32	Investigating Temporal Control in Photoinduced Atom Transfer Radical Polymerization. Macromolecules, 2020, 53, 5280-5288.	4.8	47
33	The Role of Cu ⁰ in Surface-Initiated Atom Transfer Radical Polymerization: Tuning Catalyst Dissolution for Tailoring Polymer Interfaces. Macromolecules, 2018, 51, 6825-6835.	4.8	44
34	Electrochemical characterization of common catalysts and initiators for atom transfer radical polymerization in [BMIm][OTf]. Electrochemistry Communications, 2017, 77, 116-119.	4.7	43
35	New protocol to determine the equilibrium constant of atom transfer radical polymerization. Electrochimica Acta, 2018, 260, 648-655.	5.2	43
36	Impact of Organometallic Intermediates on Copper-Catalyzed Atom Transfer Radical Polymerization. Macromolecules, 2019, 52, 4079-4090.	4.8	42

#	Article	IF	CITATIONS
37	Electrochemical triggering and control of atom transfer radical polymerization. Current Opinion in Electrochemistry, $2018, 8, 1-7$.	4.8	41
38	<i>>p</i> â€Substituted Tris(2â€pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. Angewandte Chemie - International Edition, 2020, 59, 14910-14920.	13.8	32
39	Understanding the Relationship between Catalytic Activity and Termination in photoATRP: Synthesis of Linear and Bottlebrush Polyacrylates. Macromolecules, 2020, 53, 59-67.	4.8	31
40	Two-compartment kinetic Monte Carlo modelling of electrochemically mediated ATRP. Reaction Chemistry and Engineering, 2018, 3, 866-874.	3.7	28
41	Reductive Termination of Cyanoisopropyl Radicals by Copper(I) Complexes and Proton Donors: Organometallic Intermediates or Coupled Proton–Electron Transfer?. Inorganic Chemistry, 2019, 58, 6445-6457.	4.0	28
42	Direct ATRP of Methacrylic Acid with Iron-Porphyrin Based Catalysts. ACS Macro Letters, 2018, 7, 26-30.	4.8	27
43	Ab Initio Emulsion Atomâ€Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2018, 57, 8270-8274.	13.8	27
44	Mechanism of supplemental activator and reducing agent atom transfer radical polymerization mediated by inorganic sulfites: experimental measurements and kinetic simulations. Polymer Chemistry, 2017, 8, 6506-6519.	3.9	25
45	Benefits of Catalyzed Radical Termination: High-Yield Synthesis of Polyacrylate Molecular Bottlebrushes without Gelation. Macromolecules, 2018, 51, 6218-6225.	4.8	24
46	Synergy between Electrochemical ATRP and RAFT for Polymerization at Low Copper Loading. Macromolecular Rapid Communications, 2018, 39, 1800221.	3.9	24
47	Atom Transfer Radical Polymerization of Acrylic and Methacrylic Acids: Preparation of Acidic Polymers with Various Architectures. ACS Macro Letters, 2020, 9, 693-699.	4.8	23
48	An isocyanide ligand for the rapid quenching and efficient removal of copper residues after Cu/TEMPO-catalyzed aerobic alcohol oxidation and atom transfer radical polymerization. Chemical Science, 2020, 11, 4251-4262.	7.4	23
49	Pushing the Limit: Synthesis of SiO ₂ - <i>g</i> -PMMA/PS Particle Brushes via ATRP with Very Low Concentration of Functionalized SiO ₂ â€"Br Nanoparticles. Macromolecules, 2019, 52, 8713-8723.	4.8	21
50	Redox-switchable atom transfer radical polymerization. Chemical Communications, 2019, 55, 612-615.	4.1	21
51	Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. IScience, 2021, 24, 102578.	4.1	17
52	Electrochemically mediated atom transfer radical polymerization with dithiocarbamates as alkyl pseudohalides. Journal of Polymer Science Part A, 2019, 57, 376-381.	2.3	16
53	Effect of halogen and solvent on iron-catalyzed atom transfer radical polymerization. Polymer Chemistry, 2022, 13, 1059-1066.	3.9	15
54	Activation of alkyl halides at the Cu ^O surface in SARA ATRP: An assessment of reaction order and surface mechanisms. Journal of Polymer Science Part A, 2017, 55, 3048-3057.	2.3	12

Marco Fantin

#	Article	IF	CITATION
55	Axially Ligated Mesohemins as Bio-Mimicking Catalysts for Atom Transfer Radical Polymerization. Molecules, 2019, 24, 3969.	3.8	3
56	p â€Substituted Tris(2â€pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. Angewandte Chemie, 2020, 132, 15020-15030.	2.0	2
57	Electrochemical Procedures To Determine Thermodynamic and Kinetic Parameters of Atom Transfer Radical Polymerization. ACS Symposium Series, 2018, , 161-189.	0.5	1
58	Ab Initio Emulsion Atomâ€Transfer Radical Polymerization. Angewandte Chemie, 2018, 130, 8402-8406.	2.0	1