Jin-Ku Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2193860/publications.pdf

Version: 2024-02-01

68	1,178	19	31
papers	citations	h-index	g-index
68	68	68	1318
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4–AgBr composite. Journal of Hazardous Materials, 2016, 307, 26-35.	12.4	109
2	Controlled synthesis of silver phosphate crystals with high photocatalytic activity and bacteriostatic activity. CrystEngComm, 2012, 14, 8714.	2.6	75
3	Preparation of silver/hydroxyapatite nanocomposite spheres. Powder Technology, 2008, 184, 21-24.	4.2	56
4	A New Complementary Catalyst and Catalytic Mechanism: Ag ₂ MoO ₄ /Ag/AgBr/GO Heterostructure. Industrial & amp; Engineering Chemistry Research, 2016, 55, 9873-9879.	3.7	56
5	In-situ bonding technology and excellent anticorrosion activity of graphene oxide / hydroxyapatite nanocomposite pigment. Dyes and Pigments, 2019, 160, 109-118.	3.7	51
6	Mass Production, Enhanced Visible Light Photocatalytic Efficiency, and Application of Modified ZnO Nanocrystals by Carbon Dots. Industrial & Engineering Chemistry Research, 2015, 54, 1766-1772.	3.7	45
7	Atmospheric Self-induction Synthesis and Enhanced Visible Light Photocatalytic Performance of Fe ³⁺ Doped Ag-ZnO Mesocrystals. Industrial & Engineering Chemistry Research, 2014, 53, 13236-13246.	3.7	40
8	Thermal perturbation nucleation and growth of silver molybdate nanoclusters by a dynamic template route. CrystEngComm, 2015, 17, 5511-5521.	2.6	37
9	Construction of silver tungstate multilevel sphere clusters by controlling the energy distribution on the crystal surface. CrystEngComm, 2015, 17, 1129-1138.	2.6	35
10	One step self-heating synthesis and their excellent anticorrosion performance of zinc phosphate/benzotriazole composite pigments. Dyes and Pigments, 2017, 141, 74-82.	3.7	33
11	Silver Phosphate Crystal Growth by Screw Dislocation Driven of Dynamic-Template. Crystal Growth and Design, 2013, 13, 4837-4843.	3.0	30
12	The biotoxicity of hydroxyapatite nanoparticles to the plant growth. Journal of Hazardous Materials, 2014, 270, 71-81.	12.4	28
13	Mass preparation and anticorrosion mechanism of highly triple-effective corrosion inhibition performance for co-modified zinc phosphate-based pigments. Dyes and Pigments, 2019, 161, 489-499.	3.7	28
14	Design and preparation of easily recycled Ag2WO4@ZnO@Fe3O4 ternary nanocomposites and their highly efficient degradation of antibiotics. Journal of Materials Science, 2016, 51, 7793-7802.	3.7	26
15	High Degradation Activity and Quantity Production of Aluminum-Doped Zinc Oxide Nanocrystals Modified by Nitrogen Atoms. Industrial & Engineering Chemistry Research, 2014, 53, 2229-2237.	3.7	25
16	Eminently Enhanced Anticorrosion Performance and Mechanisms of X-ZnO ($X = C$, N, and P) Solid Solutions. Inorganic Chemistry, 2017, 56, 12260-12271.	4.0	23
17	Catalytic performance of gold nanoparticles using different crystallinity HAP as carrier materials. Materials Research Bulletin, 2014, 55, 190-197.	5.2	21
18	Mass preparation and novel visible light photocatalytic activity of C and Ag Co-modified ZnO nanocrystals. Journal of Colloid and Interface Science, 2015, 459, 1-9.	9.4	20

#	Article	IF	Citations
19	Plasmon-enhanced instantaneous photocatalytic activity of Au@Ag3PO4 heterostructure targeted at emergency treatment of environmental pollution. Journal of Materials Science, 2017, 52, 2495-2510.	3.7	20
20	Multistage Assembled Rubik's Cube-like Structure and Outstanding Anticorrosion Performance Induced by Magnetic Metal Doping. Chemistry of Materials, 2018, 30, 7296-7305.	6.7	20
21	Design and Application of Ag ₃ PO ₄ @Ag ₄ V ₂ O ₇ Z-Scheme Photocatalysts with a Micro-Nano Tube-Cluster Structure for the Co-Degradation of Nitrate and Ammonia in Wastewater, Industrial & Description of Chemistry Research, 2019, 58, 18027-18035.	3.7	19
22	Controllable preparation and sterilization activity of zinc aluminium oxide nanoparticles. Materials Science and Engineering C, 2012, 32, 680-684.	7.3	18
23	Preparation and optical properties of silver chromate self-assembly necklace structures. Journal of Nanoparticle Research, 2008, 10, 531-535.	1.9	15
24	Production and Photoelectric Activity of P and Al Co-Doped ZnO Nanomaterials. European Journal of Inorganic Chemistry, 2015, 2015, 3708-3714.	2.0	15
25	Controlled synthesis of SrCrO4 crystals with different morphologies. Crystal Research and Technology, 2007, 42, 211-215.	1.3	14
26	FACILE SYNTHESIS OF HYDROXYLAPATITE NANOSTRUCTURES WITH VARIOUS MORPHOLOGIES. Nano, 2009, 04, 165-170.	1.0	14
27	Oxygen Vacancy Defects and a Field Effect-Mediated ZnO/WO _{2.92} Heterojunction for Enhanced Corrosion Resistance. Inorganic Chemistry, 2021, 60, 15390-15403.	4.0	14
28	Mosaic structure effect and superior catalytic performance of AgBr/Ag ₂ MoO ₄ composite materials. RSC Advances, 2016, 6, 94771-94779.	3.6	13
29	SYNTHESIS OF YTTRIA-STABILIZED CUBIC ZIRCONIA NANOCRYSTALS BY ULTRASONIC–MICROWAVE ROUTE. Nano, 2010, 05, 271-277.	1.0	12
30	Enhanced photoelectric properties by the coordinating role of doping and modification. Physical Chemistry Chemical Physics, 2016, 18, 4850-4859.	2.8	12
31	Photocatalytic activity of silver chromate materials by various synthesis methods. Journal of Experimental Nanoscience, 2016 , 11 , 650 - 659 .	2.4	12
32	Enhanced Anticorrosion Performance and Mass Preparation of Magnetic Metal-Doped Zinc Oxide Nano Solid Solutions. Industrial & Engineering Chemistry Research, 2018, 57, 10798-10808.	3.7	12
33	Research on correlation between corrosion resistance and photocatalytic activity of molybdenum zinc oxide modified by carbon quantum dots pigments. Dyes and Pigments, 2020, 175, 108148.	3.7	12
34	PREPARATION AND ANTI-CORROSION PERFORMANCE OF ZINC PHOSPHATE NANOCRYSTALS BY ULTRASONIC–HYDROTHERMAL SYNERGISTIC ROUTE. Nano, 2014, 09, 1450059.	1.0	11
35	Thermal Perturbation Nucleation and Controllable Growth of Silver Vanadate Crystals by Dynamic Template Route. Crystal Growth and Design, 2017, 17, 4254-4264.	3.0	10
36	Converting CO ₂ Hydrogenation Products from Paraffins to Olefins: Modification of Zeolite Surface Properties by a UIO- <i>n</i>) Membrane. ACS Catalysis, 2022, 12, 5894-5902.	11.2	10

#	Article	IF	Citations
37	Mass production and photoelectric performances of P and Al Co-doped ZnO nanocrystals under different cooling post-processes. Journal of Alloys and Compounds, 2015, 648, 438-444.	5.5	9
38	Improving anticorrosion performance of hydroxyapatite via controlling exposed crystal surface and applications. Journal of Alloys and Compounds, 2020, 845, 156290.	5.5	9
39	Self-induced synthesis under neutral conditions and novel visible light photocatalytic activity of Ag ₄ V ₂ O ₇ polyoxometalate. New Journal of Chemistry, 2021, 45, 9569-9581.	2.8	9
40	Enhancing Corrosion Inhibition Performance of ZnO Solid Solution by Doping Variable-Valence Rare-Earth Element Cerium. Industrial & Engineering Chemistry Research, 2022, 61, 421-432.	3.7	9
41	FACILE SYNTHESIS OF COPPER NANOPARTICLE CHAINS. Nano, 2007, 02, 31-34.	1.0	8
42	Rapid degradation of unmanageable polycyclic aromatic hydrocarbons by a C-ZnO solid solution nanocatalyst. New Journal of Chemistry, 2018, 42, 4308-4316.	2.8	8
43	Assembly and copper ions detection of highly sensible and stable carbon dots/hydroxyapatite fluorescence probe. Materials Technology, 2019, 34, 674-682.	3.0	8
44	Anticorrosion Performance and Application of a Mixed-Valence Mn ^O <i>_x</i> Mn ^{>2+} _{0.05–<i>x</i>} Zn _{0.95} O Solid Solution Induced by Magnetic Doping. Industrial & Description of the Solution Induced by Magnetic Doping. Industrial & Description of the Solution Induced by Magnetic Doping. Industrial & Description of the Solution Induced by Magnetic Doping. Industrial & Description of the Solution	3.7	8
45	Gradient Design of Vacancies and Their Positive Correlation with Electrochemical Anticorrosion Protection. Inorganic Chemistry, 2022, 61, 8053-8065.	4.0	8
46	Excellent corrosion resistance of FGO/Zn2SiO4 composite material in epoxy coatings. Progress in Organic Coatings, 2022, 170, 106992.	3.9	8
47	PREPARATION AND CHARACTERIZATION OF ELECTRIC ZAO NANOPARTICLES. Nano, 2010, 05, 215-220.	1.0	7
48	<i>IN SITU</i> PREPARATION AND INHIBITORY ACTIVITY OF HYDROXYAPATITE/SILVER NANOCOMPOSITE. Nano, 2012, 07, 1250050.	1.0	7
49	Light-dependent controlled synthesis and photocatalytic properties of stable Ag 3 nanocrystals. Materials Research Bulletin, 2014, 60, 783-793.	5.2	7
50	Intelligently assembly of W18O49 nanorod clusters with directionally generated oxygen vacancies and excellent electrochemical properties. Nano Research, 2022, 15, 3575-3586.	10.4	7
51	Mass-production route and application of ZnO nanocrystals modified with various elements (Li, Al, N,) Tj ETQq1 1	. 0,78431 2.7	4 rgBT /Over
52	Construction, enhanced visible-light photocatalytic activity and application of multiple complementary Ag dots decorated onto Ag2MoO4/AZO hybrid nanocomposite. Research on Chemical Intermediates, 2019, 45, 873-892.	2.7	6
53	UIO66-membranized SAPO-34 Pt catalyst for enhanced carbon dioxide conversion efficiency. Materials Today Energy, 2021, 21, 100781.	4.7	6
54	Composition design and anticorrosion performance optimization of zinc molybdate pigments. Materials Today Communications, 2021, 28, 102477.	1.9	6

#	Article	IF	Citations
55	SYNTHESIS OF CALCIUM OXALATE ASSEMBLY STRUCTURE AND CONVERSION. Nano, 2007, 02, 97-102.	1.0	5
56	Induced synthesis and characterisation of Ag and Ag ₂ S assembly nanoparticle chains. Journal of Experimental Nanoscience, 2011, 6, 209-216.	2.4	5
57	EFFECTIVE SYNTHESIS AND APPLICATION OF ZAO NANOPARTICLES WITH GOOD DISPERSION. Nano, 2012, 07, 1250017.	1.0	5
58	Assembly and copper ions detection of highly sensible and stable hydroxyapatite nanocomposite fluorescence probe. Micro and Nano Letters, 2014, 9, 127-131.	1.3	5
59	Surface coordination and excellent anticorrosion performance of strontiumapatite nanocomposite. Journal of Industrial and Engineering Chemistry, 2019, 80, 656-666.	5.8	5
60	Improved anticorrosion performance of mixed valence Mn-modified ZnO dilute magnetic solid solution with multilevel self-assembled network structure. Nano Research, 2022, 15, 6590-6600.	10.4	5
61	Preparation and Enhanced Catalyst Effect of Assembled Hydroxylapatite Microsphere Chains. Journal of Nanoscience and Nanotechnology, 2012, 12, 1924-1930.	0.9	4
62	Controlled synthesis and characterizations of thermo-stabilized Ag3PO4 crystals. Research on Chemical Intermediates, 2016, 42, 8285-8304.	2.7	4
63	Enhancing Anticorrosion Properties of Micro–Nano Zinc Vanadate from Atomic Modulation Supplemented by Light Modification. Industrial & Engineering Chemistry Research, 2021, 60, 10064-10075.	3.7	4
64	THE CONTROLLED SYNTHESIS AND STERILIZATION PERFORMANCE OF Ag/Au NANOCOMPOSITE CHAINS. Nano, 2012, 07, 1150002.	1.0	3
65	Preparation and characterization of CaCO3 crystals and CaCO3/La2(CO3)3 composited fluorescent materials. Journal of Composite Materials, 2012, 46, 91-97.	2.4	3
66	High Anticorrosion Properties due to Electron Spin Polarization of Hydroxyapatite with Point Defects. Industrial & Engineering Chemistry Research, 2022, 61, 4179-4190.	3.7	2
67	The facile synthesis, properties and application of ZAO nanomaterials. Journal of Experimental Nanoscience, 2015, 10, 738-745.	2.4	1
68	Preparation and electrochemical inhibition properties of Ce ³⁺ -photomodified zinc phosphate materials. New Journal of Chemistry, 2022, 46, 2068-2080.	2.8	0