Yahya M Al-Wahaibi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2193769/publications.pdf

Version: 2024-02-01

66 papers 2,533 citations

236925 25 h-index 197818 49 g-index

66 all docs 66
docs citations

66 times ranked 2557 citing authors

#	Article	IF	CITATIONS
1	"Glycolipid biosurfactant-silica nanoparticles―based green application for enhancement of oil recovery. Petroleum Science and Technology, 2022, 40, 2064-2081.	1.5	6
2	Biopolymer production by Aureobasidium mangrovei SARA-138H and its potential for oil recovery enhancement. Applied Microbiology and Biotechnology, 2021, 105, 105-117.	3 . 6	8
3	Application of a new bio-ASP for enhancement of oil recovery: Mechanism study and core displacement test. Fuel, 2021, 287, 119432.	6.4	13
4	Effects of water salinity on the foam dynamics for EOR application. Journal of Petroleum Exploration and Production, 2021, 11, 3321-3332.	2.4	5
5	Biotransformation of Heavy Crude Oil and Biodegradation of Oil Pollution by Arid Zone Bacterial Strains. Microorganisms for Sustainability, 2019, , 103-122.	0.7	4
6	Extractive Desulfurization of Liquid Fuel using Modified Pyrollidinium and Phosphonium Based Ionic Liquid Solvents. Journal of Solution Chemistry, 2018, 47, 468-483.	1.2	18
7	Alkaline-Biosurfactant-Biopolymer Process and its Potential for Enhancing Oil Recovery in Omani Oil Field., 2018,,.		4
8	Multi-Scale Approach to Estimating Two-Phase Relative Permeability from Unstable Heavy Oil Displacement by History Matching. , 2018, , .		0
9	Design and Performance of Smart Water Shock Injection SWSI in Carbonate Reservoirs. , 2018, , .		2
10	Analysis of Bacterial Diversity in Different Heavy Oil Wells of a Reservoir in South Oman with Alkaline pH. Scientifica, 2018, 2018, 1-10.	1.7	4
11	Microbial-Enhanced Heavy Oil Recovery under Laboratory Conditions by Bacillus firmus BG4 and Bacillus halodurans BG5 Isolated from Heavy Oil Fields. Colloids and Interfaces, 2018, 2, 1.	2.1	47
12	Diffusion of carbon dioxide in formation water as a result of CO2 enhanced oil recovery and CO2 sequestration. Journal of Petroleum Exploration and Production, 2017, 7, 161-168.	2.4	35
13	Desulfurization of liquid fuel via extraction with imidazole-containing deep eutectic solvent. Green Processing and Synthesis, 2017, 6, 511-521.	3.4	16
14	Mechanistic Study of Surfactant/Polymer Adsorption and Its Effect on Surface Morphology and Wettability. , 2017, , .		6
15	Draft Genome Sequence of Bacillus subtilis AS2, a Heavy Crude Oil-Degrading and Biosurfactant-Producing Bacterium Isolated from a Soil Sample. Genome Announcements, 2017, 5, .	0.8	4
16	The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions. PLoS ONE, 2017, 12, e0171432.	2.5	29
17	Probabilistic Approach in Wellbore Stability Analysis during Drilling. Journal of Petroleum Engineering, 2016, 2016, 1-13.	0.6	7
18	Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery. Frontiers in Microbiology, 2016, 7, 1853.	3 . 5	70

#	Article	IF	CITATIONS
19	Efficient non-catalytic oxidative and extractive desulfurization of liquid fuels using ionic liquids. RSC Advances, 2016, 6, 103606-103617.	3.6	5
20	Non-hydrocarbon gas injection followed by steam–gas co-injection for heavy oil recovery enhancement from fractured carbonate reservoirs. Journal of Petroleum Science and Engineering, 2016, 144, 121-130.	4.2	28
21	Uniqueness, repeatability analysis and comparative evaluation of experimentally determined MMPs. Journal of Petroleum Science and Engineering, 2016, 147, 218-227.	4.2	18
22	Experimental Determination of Minimum Miscibility Pressure. Procedia Engineering, 2016, 148, 1191-1198.	1.2	28
23	Measurements and prediction of ternary liquid–liquid equilibria for mixtures of ILÂ+Âsulfur compoundÂ+Âhexadecane. Fluid Phase Equilibria, 2016, 421, 16-23.	2.5	22
24	Potential in heavy oil biodegradation via enrichment of spore forming bacterial consortia. Journal of Petroleum Exploration and Production, 2016, 6, 787-799.	2.4	21
25	Simulation study of wettability alteration by deep eutectic solvent injection as an EOR agent for heavy oil reservoirs. Journal of Petroleum Science and Engineering, 2016, 144, 66-75.	4.2	8
26	Injection of biosurfactant and chemical surfactant following hot water injection to enhance heavy oil recovery. Petroleum Science, 2016, 13, 100-109.	4.9	27
27	Bioremediation of Heavy Crude Oil Contamination. Open Biotechnology Journal, 2016, 10, 301-311.	1.2	21
28	Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field. Microbial Cell Factories, 2015, 14, 141.	4.0	42
29	Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery. Frontiers in Microbiology, 2015, 6, 1324.	3.5	118
30	Feasibility of phosphonium-based ionic liquids as solvents for extractive desulfurization of liquid fuels. Fluid Phase Equilibria, 2015, 401, 102-109.	2.5	36
31	Effects of concentration, salinity and injection scenario of ionic liquids analogue in heavy oil recovery enhancement. Journal of Petroleum Science and Engineering, 2015, 133, 114-122.	4.2	25
32	Stability of Superoxide Ion in Phosphonium-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 2074-2080.	3.7	13
33	Optimum Performance of Extractive Desulfurization of Liquid Fuels Using Phosphonium and Pyrrolidinium-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 6540-6550.	3.7	51
34	Effect of low interfacial tension on flow patterns, pressure gradients and holdups of medium-viscosity oil/water flow in horizontal pipe. Experimental Thermal and Fluid Science, 2015, 68, 58-67.	2.7	24
35	Experimental investigation of the effects of various parameters on viscosity reduction of heavy crude by oil–water emulsion. Petroleum Science, 2015, 12, 170-176.	4.9	28
36	The novel use of Deep Eutectic Solvents for enhancing heavy oil recovery. Journal of Petroleum Science and Engineering, 2015, 130, 6-15.	4.2	78

#	Article	IF	CITATIONS
37	Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: Experimental design and optimization by central-composite design. Chemical Engineering and Processing: Process Intensification, 2015, 93, 10-20.	3.6	96
38	The Novel Application of Hydrated Metal Halide (SnCl2.2H2O) – Based Deep Eutectic Solvent for the Extractive Desulfurization of Liquid Fuels. International Journal of Chemical Engineering and Applications (IJCEA), 2015, 6, 367-371.	0.3	22
39	Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review. Scientific World Journal, The, 2014, 2014, 1-12.	2.1	76
40	Deep oxidative desulfurization of liquid fuels. Reviews in Chemical Engineering, 2014, 30, 337-378.	4.4	149
41	Effect of Nanofluid Treatment on Water Sensitive Formation to Investigate Water Shock Phenomenon, An Experimental Study. Journal of Dispersion Science and Technology, 2014, 35, 889-897.	2.4	7
42	A Solid Organic Acid Catalyst for the Pretreatment of Low-Grade Crude Palm Oil and Biodiesel Production. International Journal of Green Energy, 2014, 11, 129-140.	3.8	13
43	Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids and Surfaces B: Biointerfaces, 2014, 114, 324-333.	5.0	232
44	Parametric study to develop an empirical correlation for undersaturated crude oil viscosity based on the minimum measured input parameters. Fuel, 2014, 119, 111-119.	6.4	1
45	Solubility of Thiophene and Dibenzothiophene in Anhydrous FeCl ₃ - and ZnCl ₂ -Based Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2014, 53, 6815-6823.	3.7	59
46	Three dimensional modeling for predicting sand production. Journal of Petroleum Science and Engineering, 2013, 109, 348-363.	4.2	30
47	Fractured carbonate reservoirs sweep efficiency improvement using microbial biomass. Journal of Petroleum Science and Engineering, 2013, 112, 178-184.	4.2	10
48	Glucose-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 2013, 178, 137-141.	4.9	285
49	Microbial Consortia in Oman Oil Fields: A Possible Use in Enhanced Oil Recovery. Journal of Microbiology and Biotechnology, 2013, 23, 106-117.	2.1	26
50	Residual-Oil Recovery Through Injection of Biosurfactant, Chemical Surfactant, and Mixtures of Both Under Reservoir Temperatures: Induced-Wettability and Interfacial-Tension Effects. SPE Reservoir Evaluation and Engineering, 2012, 15, 210-217.	1.8	76
51	Fruit sugar-based deep eutectic solvents and their physical properties. Thermochimica Acta, 2012, 541, 70-75.	2.7	260
52	Experimental Investigation of Heavy Oil Recovery from Fractured Reservoirs by Secondary Steam – Gas Assisted Gravity Drainage. , 2012, , .		10
53	A physically-based three dimensional fracture network modeling technique. Scientia Iranica, 2012, 19, 594-604.	0.4	9
54	Investigating wettability alteration during MEOR process, a micro/macro scale analysis. Colloids and Surfaces B: Biointerfaces, 2012, 95, 129-136.	5.0	76

#	Article	IF	CITATIONS
55	Effect of Nanofluid Injection on Fines Mitigation to Remediate Formation Damage: A Microscopic View. Journal of Advanced Microscopy Research, 2012, 7, 140-144.	0.3	2
56	Lenses Heterogeneity Effects on Water Alternating Gas Injection in Oil Wet Porous Media. , 2011, , .		0
57	Investigation of longitudinal and transverse dispersion in stable displacements with a high viscosity and density contrast between the fluids. Journal of Contaminant Hydrology, 2011, 120-121, 170-183.	3.3	24
58	The influence of high permeability lenses on immiscible, first- and multi-contact miscible gas injection. Journal of Petroleum Science and Engineering, 2011, 77, 313-325.	4.2	8
59	First-Contact-Miscible and Multicontact-Miscible Gas Injection within a Channeling Heterogeneity System. Energy & Energy	5.1	26
60	Gas–oil non-equilibrium in multicontact miscible displacements within homogeneous porous media. Journal of Petroleum Science and Engineering, 2009, 68, 71-80.	4.2	16
61	Physical Properties (Density, Excess Molar Volume, Viscosity, Surface Tension, and Refractive Index) of Ethanol + Glycerol. Journal of Chemical & Ethanol + Glycerol. Journal of Chemical & Ethanol + Glycerol.	1.9	74
62	Experimental and Numerical Studies of Gas/Oil Multicontact Miscible Displacements in Homogeneous and Crossbedded Porous Media. SPE Journal, 2007, 12, 62-76.	3.1	23
63	Numerical Simulation and Experimental Studies of Oil Recovery via First-Contact Miscible Water Alternating Gas Injection within Shaley Porous Media., 2007,,.		9
64	Physical Properties (Density, Viscosity, Surface Tension, Interfacial Tension, and Contact Angle) of the System Isopropyl Alcohol + Cyclohexene + Water. Journal of Chemical & Engineering Data, 2007, 52, 548-552.	1.9	7
65	Drainage and imbibition relative permeabilities at near miscible conditions. Journal of Petroleum Science and Engineering, 2006, 53, 239-253.	4.2	35
66	Bacterial diversity of heavy crude oil based mud samples near Omani oil wells. Petroleum Science and Technology, 0, , 1-16.	1.5	1