
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2193734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. New England Journal of Medicine, 2017, 376, 1921-1932.	27.0	682
2	Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. Journal of Allergy and Clinical Immunology, 2012, 130, 607-612.e9.	2.9	604
3	The Immunobiology of Eosinophils. New England Journal of Medicine, 1991, 324, 1110-1118.	27.0	597
4	Functions of tissue-resident eosinophils. Nature Reviews Immunology, 2017, 17, 746-760.	22.7	376
5	Lymph node trafficking and antigen presentation by endobronchial eosinophils. Journal of Clinical Investigation, 2000, 105, 945-953.	8.2	282
6	Mechanisms of Eosinophil Recruitment. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 349-355.	2.9	256
7	Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood, 2013, 121, 2074-2083.	1.4	252
8	Practical approach to the patient with hypereosinophilia. Journal of Allergy and Clinical Immunology, 2010, 126, 39-44.	2.9	242
9	Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. Journal of Leukocyte Biology, 2009, 85, 117-123.	3.3	216
10	Leukocyte lipid bodies — Biogenesis and functions in inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 540-551.	2.4	204
11	Expression of Vascular Endothelial Growth Factor by Human Eosinophils: Upregulation by Granulocyte Macrophage Colony-stimulating Factor and Interleukin-5. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 70-77.	2.9	197
12	Eosinophil Lipid Bodies: Specific, Inducible Intracellular Sites for Enhanced Eicosanoid Formation. Journal of Experimental Medicine, 1997, 186, 909-920.	8.5	197
13	Eosinophil extracellular trap cell death–derived DNA traps: Their presence in secretions and functional attributes. Journal of Allergy and Clinical Immunology, 2016, 137, 258-267.	2.9	191
14	Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB Journal, 2007, 21, 167-178.	0.5	178
15	Airway Eosinophils: Allergic Inflammation Recruited Professional Antigen-Presenting Cells. Journal of Immunology, 2007, 179, 7585-7592.	0.8	161
16	The transcription factor XBP1 is selectively required for eosinophil differentiation. Nature Immunology, 2015, 16, 829-837.	14.5	154
17	Eosinophils and Th2 immunity: contemporary insights. Immunology and Cell Biology, 2010, 88, 250-256.	2.3	150
18	Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Review of Hematology, 2012, 5, 157-176.	2.2	140

PETER F WELLER

#	Article	IF	CITATIONS
19	Lipid Bodies in Inflammatory Cells. Journal of Histochemistry and Cytochemistry, 2011, 59, 540-556.	2.5	137
20	Lipopolysaccharide-Induced Leukocyte Lipid Body Formation In Vivo: Innate Immunity Elicited Intracellular Loci Involved in Eicosanoid Metabolism. Journal of Immunology, 2002, 169, 6498-6506.	0.8	129
21	Charcot-Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood, 2018, 132, 2183-2187.	1.4	125
22	Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18478-18483.	7.1	120
23	Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3333-3338.	7.1	119
24	Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells. Blood, 2000, 95, 1078-1085.	1.4	114
25	Extranuclear Lipid Bodies, Elicited by CCR3-mediated Signaling Pathways, Are the Sites of Chemokine-enhanced Leukotriene C4 Production in Eosinophils and Basophils. Journal of Biological Chemistry, 2001, 276, 22779-22787.	3.4	114
26	Eosinophilia. Primary Care - Clinics in Office Practice, 2016, 43, 607-617.	1.6	109
27	The cellular biology of eosinophil eicosanoid formation and function. Journal of Allergy and Clinical Immunology, 2002, 109, 393-400.	2.9	105
28	Eosinophil Secretion of Granule-Derived Cytokines. Frontiers in Immunology, 2014, 5, 496.	4.8	105
29	Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clinic Proceedings, 2021, 96, 2694-2707.	3.0	103
30	Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. Journal of Leukocyte Biology, 2008, 83, 229-236.	3.3	101
31	Pivotal Advance: Eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. Journal of Leukocyte Biology, 2008, 83, 817-821.	3.3	96
32	Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation. Current Allergy and Asthma Reports, 2016, 16, 54.	5.3	91
33	Intragranular Vesiculotubular Compartments are Involved in Piecemeal Degranulation by Activated Human Eosinophils. Traffic, 2005, 6, 866-879.	2.7	90
34	Eosinophilic Pneumonias. Clinical Microbiology Reviews, 2012, 25, 649-660.	13.6	90
35	Novel targeted therapies for eosinophilic disorders. Journal of Allergy and Clinical Immunology, 2012, 130, 563-571.	2.9	90
36	Cutting Edge: Eotaxin Elicits Rapid Vesicular Transport-Mediated Release of Preformed IL-4 from Human Eosinophils. Journal of Immunology, 2001, 166, 4813-4817.	0.8	89

#	Article	IF	CITATIONS
37	Human Eosinophils Secrete Preformed, Granule-Stored Interleukin-4 Through Distinct Vesicular Compartments. Traffic, 2005, 6, 1047-1057.	2.7	87
38	Activation of human eosinophils through leukocyte immunoglobulin-like receptor 7. Proceedings of the United States of America, 2003, 100, 1174-1179.	7.1	86
39	Intracrine Cysteinyl Leukotriene Receptor–mediated Signaling of Eosinophil Vesicular Transport–mediated Interleukin-4 Secretion. Journal of Experimental Medicine, 2002, 196, 841-850.	8.5	82
40	Eosinophils as a Novel Cell Source of Prostaglandin D2: Autocrine Role in Allergic Inflammation. Journal of Immunology, 2011, 187, 6518-6526.	0.8	82
41	Evaluation of clinical benefit from treatment with mepolizumab for patients with eosinophilic granulomatosis with polyangiitis. Journal of Allergy and Clinical Immunology, 2019, 143, 2170-2177.	2.9	82
42	Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. Journal of Allergy and Clinical Immunology, 2010, 125, 477-482.	2.9	77
43	Contemporary understanding of the secretory granules in human eosinophils. Journal of Leukocyte Biology, 2018, 104, 85-93.	3.3	77
44	Eosinophils and cysteinyl leukotrienes. Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, 69, 135-143.	2.2	75
45	Vesicle-mediated secretion of human eosinophil granule-derived major basic protein. Laboratory Investigation, 2009, 89, 769-781.	3.7	72
46	IL-16 Promotes Leukotriene C4 and IL-4 Release from Human Eosinophils via CD4- and Autocrine CCR3-Chemokine-Mediated Signaling. Journal of Immunology, 2002, 168, 4756-4763.	0.8	71
47	Prostaglandin Endoperoxide Synthase (Cyclooxygenase): Ultrastructural Localization to Nonmembrane-Bound Cytoplasmic Lipid Bodies in Human Eosinophils and 3T3 Fibroblasts. International Archives of Allergy and Immunology, 1994, 105, 245-250.	2.1	70
48	Eosinophils and Disease Pathogenesis. Seminars in Hematology, 2012, 49, 113-119.	3.4	68
49	Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Current Opinion in Immunology, 2009, 21, 694-699.	5.5	67
50	Lipid droplets in leukocytes: Organelles linked to inflammatory responses. Experimental Cell Research, 2016, 340, 193-197.	2.6	67
51	Eosinophil crystalloid granules: structure, function, and beyond. Journal of Leukocyte Biology, 2012, 92, 281-288.	3.3	66
52	Pre-embedding immunogold labeling to optimize protein localization at subcellular compartments and membrane microdomains of leukocytes. Nature Protocols, 2014, 9, 2382-2394.	12.0	66
53	Pathways for eosinophil lipid body induction: differing signal transduction in cells from normal and hypereosinophilic subjects. Journal of Leukocyte Biology, 1998, 64, 563-569.	3.3	61
54	Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histology and Histopathology, 2010, 25, 1341-54.	0.7	61

#	Article	IF	CITATIONS
55	Eotaxins. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 653-657.	2.9	59
56	Allergic Challenge–Elicited Lipid Bodies CompartmentalizeIn VivoLeukotriene C4Synthesis within Eosinophils. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 254-261.	2.9	56
57	Cytoplasmic Lipid Bodies in Eosinophils: Central Roles in Eicosanoid Generation. International Archives of Allergy and Immunology, 1999, 118, 450-452.	2.1	54
58	Cutting Edge: Prostaglandin D2 Enhances Leukotriene C4 Synthesis by Eosinophils during Allergic Inflammation: Synergistic In Vivo Role of Endogenous Eotaxin. Journal of Immunology, 2006, 176, 1326-1330.	0.8	54
59	Spectrum of Eosinophilic End-Organ Manifestations. Immunology and Allergy Clinics of North America, 2015, 35, 403-411.	1.9	53
60	Release of Prostaglandin E2 by Microfilariae of Wuchereria bancrofti and Brugia malayi. American Journal of Tropical Medicine and Hygiene, 1992, 46, 520-523.	1.4	53
61	CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils. Journal of Leukocyte Biology, 2016, 100, 391-401.	3.3	52
62	Charcot-Leyden Crystals in Eosinophilic Inflammation: Active Cytolysis Leads to Crystal Formation. Current Allergy and Asthma Reports, 2019, 19, 35.	5.3	50
63	Imaging Lipid Bodies Within Leukocytes with Different Light Microscopy Techniques. Methods in Molecular Biology, 2011, 689, 149-161.	0.9	44
64	How to detect eosinophil ETosis (EETosis) and extracellular traps. Allergology International, 2021, 70, 19-29.	3.3	44
65	Mechanisms of eosinophil cytokine release. Memorias Do Instituto Oswaldo Cruz, 2005, 100, 73-81.	1.6	44
66	CCL11 elicits secretion of RNases from mouse eosinophils and their cellâ€free granules. FASEB Journal, 2012, 26, 2084-2093.	0.5	43
67	Mature human eosinophils express functional Notch ligands mediating eosinophil autocrine regulation. Blood, 2009, 113, 3092-3101.	1.4	39
68	Galectin-10, the protein that forms Charcot-Leyden crystals, is not stored in granules but resides in the peripheral cytoplasm of human eosinophils. Journal of Leukocyte Biology, 2020, 108, 139-149.	3.3	38
69	Eosinophil ETosis–Mediated Release of Galectinâ€10 in Eosinophilic Granulomatosis With Polyangiitis. Arthritis and Rheumatology, 2021, 73, 1683-1693.	5.6	38
70	Ultrastructural Localization of Vesicle-associated Membrane Protein(s) to Specialized Membrane Structures in Human Pericytes, Vascular Smooth Muscle Cells, Endothelial Cells, Neutrophils, and Eosinophils. Journal of Histochemistry and Cytochemistry, 2001, 49, 293-304.	2.5	37
71	Eosinophils: Offenders or General Bystanders in Allergic Airway Disease and Pulmonary Immunity?. Journal of Innate Immunity, 2011, 3, 113-119.	3.8	35
72	EliCell: a gel-phase dual antibody capture and detection assay to measure cytokine release from eosinophils. Journal of Immunological Methods, 2000, 244, 105-115.	1.4	34

#	Article	IF	CITATIONS
73	Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). Journal of Leukocyte Biology, 2018, 104, 69-83.	3.3	34
74	Unraveling the complexity of lipid body organelles in human eosinophils. Journal of Leukocyte Biology, 2014, 96, 703-712.	3.3	32
75	Subcellular fractionation of human eosinophils: Isolation of functional specific granules on isoosmotic density gradients. Journal of Immunological Methods, 2009, 344, 64-72.	1.4	30
76	Extracellular Microvesicle Production by Human Eosinophils Activated by "Inflammatory―Stimuli. Frontiers in Cell and Developmental Biology, 2016, 4, 117.	3.7	30
77	Contributions of Electron Microscopy to Understand Secretion of Immune Mediators by Human Eosinophils. Microscopy and Microanalysis, 2010, 16, 653-660.	0.4	28
78	MHC Class II and CD9 in Human Eosinophils Localize to Detergent-Resistant Membrane Microdomains. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 188-195.	2.9	28
79	Eosinophilia in Mast Cell Disease. Immunology and Allergy Clinics of North America, 2014, 34, 357-364.	1.9	28
80	Induction of endothelial cell cytoplasmic lipid bodies during hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H294-H301.	3.2	27
81	The Internal Architecture of Leukocyte Lipid Body Organelles Captured by Three-Dimensional Electron Microscopy Tomography. PLoS ONE, 2013, 8, e59578.	2.5	27
82	Schistosomal Lipids Activate Human Eosinophils via Toll-Like Receptor 2 and PGD2 Receptors: 15-LO Role in Cytokine Secretion. Frontiers in Immunology, 2018, 9, 3161.	4.8	26
83	Localization of Granule Proteins in Human Eosinophil Bone Marrow Progenitors. International Archives of Allergy and Immunology, 1997, 114, 130-138.	2.1	23
84	EliCell assay for the detection of released cytokines from eosinophils. Journal of Immunological Methods, 2003, 276, 227-237.	1.4	23
85	Case 4-2005. New England Journal of Medicine, 2005, 352, 609-615.	27.0	22
86	Purinergic P2Y12 Receptor Activation in Eosinophils and the Schistosomal Host Response. PLoS ONE, 2015, 10, e0139805.	2.5	22
87	Human Eosinophils Release the Lymphocyte and Eosinophil Active Cytokines, RANTES and Lymphocyte Chemoattractant Factor. International Archives of Allergy and Immunology, 1995, 107, 342-342.	2.1	21
88	EicosaCell – An Immunofluorescent-Based Assay to Localize Newly Synthesized Eicosanoid Lipid Mediators at Intracellular Sites. Methods in Molecular Biology, 2011, 689, 163-181.	0.9	21
89	Ultrastructural immunolocalization of basic fibroblast growth factor to lipid bodies and secretory granules in human mast cells. The Histochemical Journal, 2001, 33, 397-402.	0.6	19
90	Leptin Elicits LTC4 Synthesis by Eosinophils Mediated by Sequential Two-Step Autocrine Activation of CCR3 and PGD2 Receptors. Frontiers in Immunology, 2018, 9, 2139.	4.8	19

#	Article	IF	CITATIONS
91	LEUKOCYTE LIPID BODIES - STRUCTURE AND FUNCTION AS "EICOSASOMES". Transactions of the American Clinical and Climatological Association, 2016, 127, 328-340.	0.5	19
92	Activated Human Eosinophils. International Archives of Allergy and Immunology, 2005, 138, 347-349.	2.1	18
93	Leukocyte lipid bodies: inflammation-related organelles are rapidly detected by wet scanning electron microscopy. Journal of Lipid Research, 2006, 47, 2589-2594.	4.2	18
94	Identification of Piecemeal Degranulation and Vesicular Transport of MBP-1 in Liver-Infiltrating Mouse Eosinophils During Acute Experimental Schistosoma mansoni Infection. Frontiers in Immunology, 2018, 9, 3019.	4.8	18
95	Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy. Experimental Cell Research, 2016, 347, 385-390.	2.6	17
96	Eosinophil Granule Cationic Proteins: Major Basic Protein Is Distinct From the Smaller Subunit of Eosinophil Peroxidase. Journal of Leukocyte Biology, 1988, 43, 1-4.	3.3	16
97	Single-Cell Analyses of Human Eosinophils at High Resolution to Understand Compartmentalization and Vesicular Trafficking of Interferon-Gamma. Frontiers in Immunology, 2018, 9, 1542.	4.8	15
98	Expression of α4β7 Integrin on Eosinophils and Modulation of α4-Integrin-Mediated Eosinophil Adhesion via CD4. International Archives of Allergy and Immunology, 1995, 107, 343-344.	2.1	14
99	Anti-allergic properties of the bromeliaceae Nidularium procerum: Inhibition of eosinophil activation and influx. International Immunopharmacology, 2005, 5, 1966-1974.	3.8	14
100	Electron tomography and immunonanogold electron microscopy for investigating intracellular trafficking and secretion in human eosinophils. Journal of Cellular and Molecular Medicine, 2008, 12, 1416-1419.	3.6	14
101	Human Eosinophil Leukocytes Express Protein Disulfide Isomerase in Secretory Granules and Vesicles. Journal of Histochemistry and Cytochemistry, 2014, 62, 450-459.	2.5	14
102	Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils. Experimental Cell Research, 2015, 337, 129-135.	2.6	13
103	The Charcot–Leyden crystal protein revisited—A lysopalmitoylphospholipase and more. Journal of Leukocyte Biology, 2020, 108, 105-112.	3.3	13
104	EicosaCell: An Imaging-Based Assay to Identify Spatiotemporal Eicosanoid Synthesis. Methods in Molecular Biology, 2017, 1554, 127-141.	0.9	11
105	In Vivo ETosis of Human Eosinophils: The Ultrastructural Signature Captured by TEM in Eosinophilic Diseases. Frontiers in Immunology, 0, 13, .	4.8	10
106	Human eosinophil-lymphocyte interactions. Memorias Do Instituto Oswaldo Cruz, 1997, 92, 173-182.	1.6	8
107	Arylsulfatase B Is Present in Crystalloid-Containing Granules of Human Eosinophil Granulocytes. International Archives of Allergy and Immunology, 1994, 104, 207-210.	2.1	7
108	Pulmonary Eosinophilic Granulomatosis with Polyangiitis Has IgG4 Plasma Cells and Immunoregulatory Features. American Journal of Pathology, 2020, 190, 1438-1448.	3.8	7

PETER F WELLER

#	Article	IF	CITATIONS
109	[31] Human eosinophil lysophospholipase. Methods in Enzymology, 1988, 163, 31-43.	1.0	6
110	Mitochondrial Population in Mouse Eosinophils: Ultrastructural Dynamics in Cell Differentiation and Inflammatory Diseases. Frontiers in Cell and Developmental Biology, 2022, 10, 836755.	3.7	6
111	Growth in acidic media increases production of phosphatidylinositol-specific phospholipase C byStaphylococcus aureus. Current Microbiology, 1992, 25, 125-128.	2.2	5
112	Eosinophils and eosinophilia. , 2013, , 298-309.		4
113	Rho and Rac, but not <scp>ROCK</scp> , are required for secretion of human and mouse eosinophilâ€associated <scp>RN</scp> ases. Clinical and Experimental Allergy, 2019, 49, 190-198.	2.9	3
114	Eosinophils and Eosinophilia. , 2019, , 349-361.e1.		3
115	Intercellular Interactions in the Recruitment and Functions of Human Eosinophils. Annals of the New York Academy of Sciences, 1992, 664, 116-125.	3.8	2
116	Measurement of Interleukin 16. Current Protocols in Immunology, 1997, 22, Unit 6.23.	3.6	2
117	The immunobiology of eosinophils—it's a whole new world out there: an interview with Dr. Peter F. Weller. Journal of Leukocyte Biology, 2008, 83, 822-823.	3.3	2
118	A new paradigm for eosinophil granule-dependent secretion. Communicative and Integrative Biology, 2009, 2, 482-484.	1.4	2
119	In Reply—Are Eosinophils Needed for Normal Health?. Mayo Clinic Proceedings, 2022, 97, 805-807.	3.0	1
120	Eosinophils and eosinophilia. , 2008, , 361-374.		0
121	Donald J. Krogstad, MD (1943-2020), Physician-Scientist, Malaria Researcher, and Mentor. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1748-1749.	1.4	Ο
122	Donald J. Krogstad, MD (1943–2020), Physician-Scientist, Malaria Researcher, and Mentor. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1748-1749.	1.4	0
123	Immature eosinophils. , 2022, , 253-286.		Ο
124	Mature eosinophils: General morphology. , 2022, , 7-60.		0
125	Eosinophil-associated diseases (EADs). , 2022, , 289-394.		0

#	Article	IF	CITATIONS
127	Eosinophil activation. , 2022, , 107-157.		0
128	Subcellular localization of immune mediators and other proteins. , 2022, , 159-206.		0
129	Eosinophils as secretory cells. , 2022, , 61-105.		0
130	Ultrastructure of mouse eosinophils. , 2022, , 397-473.		0