
Zahra Abbasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2193726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of a novel, efficient, and recyclable magnetic catalyst, γ -Fe 2 O 3 @HAp-Ag nanoparticles, and a solvent- and halogen-free protocol for the synthesis of coumarin derivatives. Chinese Chemical Letters, 2017, 28, 75-82.	4.8	78
2	Dispersing of Petroleum Asphaltenes by Acidic Ionic Liquid and Determination by UV-Visible Spectroscopy. Journal of Petroleum Engineering, 2013, 2013, 1-5.	0.6	34
3	Water resistance, weight loss and enzymatic degradation of blends starch/polyvinyl alcohol containing SiO2 nanoparticle. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 264-268.	2.7	30
4	Three-component synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by Ni2+ supported on hydroxyapatite-core–shell-γ-Fe2O3 nanoparticles in aqueous medium. Research on Chemical Intermediates, 2016, 42, 7597-7609.	1.3	30
5	Ni2+ supported on hydroxyapatite-core-shell γ-Fe2O3 nanoparticles: a novel, highly efficient and reusable lewis acid catalyst for the regioselective azidolysis of epoxides in water. Journal of the Iranian Chemical Society, 2014, 11, 335-340.	1.2	22
6	Characterization of the bioactive and mechanical behavior of dental ceramic/sol–gel derived bioactive glass mixtures. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 115-122.	1.5	20
7	Selective oxidation of aromatic alcohols in the presence of C3N4 photocatalysts derived from the polycondensation of melamine, cyanuric and barbituric acids. Research on Chemical Intermediates, 2021, 47, 131-156.	1.3	16
8	Hydrothermal method for synthesizing ZnFe2O4 nanoparticles, photo-degradation of Rhodamine B by ZnFe2O4 and thermal stable PS-based nanocomposite. Journal of Materials Science: Materials in Electronics, 2016, 27, 8654-8660.	1.1	15
9	Superparamagnetic recoverable flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic study of photo-catalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 1022-1033.	1.1	10
10	Au/CeO2 Photocatalyst for the Selective Oxidation of Aromatic Alcohols in Water under UV, Visible and Solar Irradiation. Catalysts, 2021, 11, 1467.	1.6	9
11	Study of enzymatic degradation and water absorption of nanocomposites starch/polyvinyl alcohol and sodium montmorillonite clay. Journal of the Taiwan Institute of Chemical Engineers, 2011, , .	2.7	8
12	Synthesis of ZnO–Ag2CO3–Fe3O4@rGO core–shell structure: magnetically separable photocatalyst for degradation of MB using the Box–Behnken design. Journal of Materials Science: Materials in Electronics, 2020, 31, 19554-19568.	1.1	8
13	Investigation on Texture Evolution and Recrystallization Aspects of Novel Mg–Zn–Gd–Y–Nd Alloys. Metals and Materials International, 2021, 27, 3983-3992.	1.8	5
14	Photocatalytic degradation of 4-Nitrophenol by g-C3N4-MCy: Mechanism study and kinetic modeling. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113004.	2.0	5
15	Study of enzymatic degradation and water absorption of composites carboxymethyl cellulose and poly (ϵ-caprolactone) containing SiO2nanoparticle by cellulase. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1516-1521.	0.9	4
16	Facile synthesis of MnFe2O4 nanoparticles and investigation of various reductant and capping agents on their size and morphology. Journal of Materials Science: Materials in Electronics, 2017, 28, 1378-1385.	1.1	4
17	Sintering of dental ceramic/sol–gel-derived bioactive glass mixtures for dental applications: the study of microstructural, biological, and thermal properties. Journal of Sol-Gel Science and Technology, 2017, 81, 523-533.	1.1	2
18	Performance Evaluation of Nanocomposite Magnetic Mono-Tosyl-β-Cyclodextrin Conjugated Carbon Nanotubes–Iron Oxide in Removal of Cr(III) from Aqueous Solutions Using Taguchi Method. Russian Journal of Physical Chemistry A, 2022, 96, 163-170.	0.1	2

#	Article	IF	CITATIONS
19	Iron oxide-based magnetic photocatalysts: Recent developments, challenges, and environmental applications. , 2021, , 235-253.		1