Parameswara Rao Chinnam

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/219369/parameswara-rao-chinnam-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

419 10 21 20 h-index g-index citations papers 11.8 3.98 23 554 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
21	Unlocking Failure Mechanisms and Improvement of Practical Liß Pouch Cells through In Operando Pressure Study. <i>Advanced Energy Materials</i> , 2022 , 12, 2103048	21.8	6
20	Unlocking Failure Mechanisms and Improvement of Practical Liß Pouch Cells through In Operando Pressure Study (Adv. Energy Mater. 7/2022). <i>Advanced Energy Materials</i> , 2022 , 12, 2270027	21.8	О
19	A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Li-Ion and Li-Metal Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100372	21.8	41
18	Fast-Charging Aging Considerations: Incorporation and Alignment of Cell Design and Material Degradation Pathways. <i>ACS Applied Energy Materials</i> , 2021 , 4, 9133-9143	6.1	8
17	Extended cycle life implications of fast charging for lithium-ion battery cathode. <i>Energy Storage Materials</i> , 2021 , 41, 656-666	19.4	13
16	Gel Electrolyte Comprising Solvate Ionic Liquid and Methyl Cellulose. <i>ACS Applied Energy Materials</i> , 2020 , 3, 279-289	6.1	8
15	An alternative route to single ion conductivity using multi-ionic salts. <i>Materials Horizons</i> , 2018 , 5, 461-47	734.4	19
14	Unravelling the structural and dynamical complexity of the equilibrium liquid grain-binding layer in highly conductive organic crystalline electrolytes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4394-4404	13	4
13	Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis. <i>Inorganic Chemistry</i> , 2018 , 57, 557-564	5.1	35
12	Crystal structure and ionic conductivity of the soft solid crystal: isoquinoline3(LiCl)2. <i>Ionics</i> , 2018 , 24, 343-349	2.7	4
11	Engineered Interfaces in Hybrid CeramicPolymer Electrolytes for Use in All-Solid-State Li Batteries. <i>ACS Energy Letters</i> , 2017 , 2, 134-138	20.1	62
10	Highly Durable, Self-Standing Solid-State Supercapacitor Based on an Ionic Liquid-Rich Ionogel and Porous Carbon Nanofiber Electrodes. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	39
9	Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG. <i>Carbohydrate Polymers</i> , 2016 , 136, 19-29	10.3	10
8	Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators. Journal of Materials Chemistry A, 2016 , 4, 14380-14391	13	7
7	A Self-Binding, Melt-Castable, Crystalline Organic Electrolyte for Sodium Ion Conduction. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15254-15257	16.4	17
6	A Self-Binding, Melt-Castable, Crystalline Organic Electrolyte for Sodium Ion Conduction. <i>Angewandte Chemie</i> , 2016 , 128, 15480-15483	3.6	5
5	Bulk-Phase Ion Conduction in Cocrystalline LiClEN,N-Dimethylformamide: A New Paradigm for Solid Electrolytes Based upon the Pearson HardSoft AcidBase Concept. <i>Chemistry of Materials</i> , 2015 , 27, 5479-5482	9.6	14

LIST OF PUBLICATIONS

4	The polyoctahedral silsesquioxane (POSS) 1,3,5,7,9,11,13,15-octaphenylpentacyclo[9.5.1.1(3,9).1(5,15).1(7,13)]octasiloxane (octaphenyl-POSS). <i>Acta Crystallographica Section C, Structural Chemistry</i> , 2014 , 70, 971-4	0.8	3
3	Self-assembled Janus-like multi-ionic lithium salts form nano-structured solid polymer electrolytes with high ionic conductivity and Li+ ion transference number. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1731-1739	13	46
2	Polyoctahedral Silsesquioxane-Nanoparticle Electrolytes for Lithium Batteries: POSS-Lithium Salts and POSS-PEGs. <i>Chemistry of Materials</i> , 2011 , 23, 5111-5121	9.6	71
1	A Comprehensive Understanding of the Aging Effects of Extreme Fast Charging on High Ni NMC Cathode. <i>Advanced Energy Materials</i> ,2103712	21.8	5