## Jean Francois Berret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/219367/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Controlled Clustering of Superparamagnetic Nanoparticles Using Block Copolymers: Design of New<br>Contrast Agents for Magnetic Resonance Imaging. Journal of the American Chemical Society, 2006, 128,<br>1755-1761. | 6.6 | 356       |
| 2  | The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials, 2011, 32, 9353-9363.                                                                        | 5.7 | 209       |
| 3  | The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on<br>Ce <sup>3+</sup> surface area concentration. Nanoscale, 2018, 10, 6971-6980.                                               | 2.8 | 208       |
| 4  | Linear rheology of entangled wormlike micelles. Langmuir, 1993, 9, 2851-2854.                                                                                                                                        | 1.6 | 191       |
| 5  | Transient Rheology of Wormlike Micelles. Langmuir, 1997, 13, 2227-2234.                                                                                                                                              | 1.6 | 176       |
| 6  | Precipitationâ^'Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid):Â Toward Stable<br>Dispersions. Langmuir, 2005, 21, 9359-9364.                                                                    | 1.6 | 176       |
| 7  | A Universal Scaling Law to Predict the Efficiency of Magnetic Nanoparticles as MRI T2 ontrast Agents.<br>Advanced Healthcare Materials, 2012, 1, 502-512.                                                            | 3.9 | 174       |
| 8  | Inhomogeneous shear flows of wormlike micelles:mA master dynamic phase diagram. Physical Review<br>E, 1997, 55, 1668-1676.                                                                                           | 0.8 | 161       |
| 9  | Shear-Induced Isotropic-to-Nematic Phase Transition in Equilibrium Polymers. Europhysics Letters, 1994, 25, 521-526.                                                                                                 | 0.7 | 159       |
| 10 | How universal are the low temperature acoustic properties of glasses?. European Physical Journal B, 1988, 70, 65-72.                                                                                                 | 0.6 | 145       |
| 11 | Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: Evidence of a shear-induced phase transition. Physical Review E, 1997, 56, 1869-1878.                                      | 0.8 | 139       |
| 12 | Interactions between Magnetic Nanowires and Living Cells: Uptake, Toxicity, and Degradation. ACS<br>Nano, 2011, 5, 5354-5364.                                                                                        | 7.3 | 132       |
| 13 | Fluorocarbon associative polymers. Current Opinion in Colloid and Interface Science, 2003, 8, 296-306.                                                                                                               | 3.4 | 120       |
| 14 | Local viscoelasticity of living cells measured by rotational magnetic spectroscopy. Nature<br>Communications, 2016, 7, 10134.                                                                                        | 5.8 | 116       |
| 15 | Electrosteric Enhanced Stability of Functional Sub-10 nm Cerium and Iron Oxide Particles in Cell<br>Culture Medium. Langmuir, 2009, 25, 9064-9070.                                                                   | 1.6 | 110       |
| 16 | Electrostatic Self-Assembly of Oppositely Charged Copolymers and Surfactants:Â A Light, Neutron, and<br>X-ray Scattering Study. Macromolecules, 2004, 37, 4922-4930.                                                 | 2.2 | 107       |
| 17 | Evidence of Nonlinear Chain Stretching in the Rheology of Transient Networks. Macromolecules, 2000, 33, 1841-1847.                                                                                                   | 2.2 | 101       |
| 18 | Shear-Induced Transitions and Instabilities in Surfactant Wormlike Micelles. Advances in Polymer<br>Science, 2009. , 1-71.                                                                                           | 0.4 | 101       |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Versatile electrostatic assembly of nanoparticles and polyelectrolytes: Coating, clustering and layer-by-layer processes. Current Opinion in Colloid and Interface Science, 2012, 17, 97-105.                              | 3.4  | 101       |
| 20 | Associating Polymers: From "Flowers―to Transient Networks. Physical Review Letters, 1998, 81,<br>5584-5587.                                                                                                                | 2.9  | 99        |
| 21 | Redispersible Hybrid Nanopowders: Cerium Oxide Nanoparticle Complexes with Phosphonated-PEG<br>Oligomers. ACS Nano, 2008, 2, 879-888.                                                                                      | 7.3  | 98        |
| 22 | Vesicles and Onions from Charged Surfactant Bilayers:Â A Neutron Scattering Study. Langmuir, 1996, 12,<br>1212-1218.                                                                                                       | 1.6  | 97        |
| 23 | Electrostatic Coâ€Assembly of Iron Oxide Nanoparticles and Polymers: Towards the Generation of<br>Highly Persistent Superparamagnetic Nanorods. Advanced Materials, 2008, 20, 3877-3881.                                   | 11.1 | 97        |
| 24 | Shear-Thickening Dilute Surfactant Solutions: Equilibrium Structure As Studied by Small-Angle<br>Neutron Scattering. Langmuir, 1999, 15, 6755-6763.                                                                        | 1.6  | 96        |
| 25 | Correlations between Rheological and Optical Properties of a Micellar Solution under Shear Banding<br>Flow. Langmuir, 2000, 16, 6464-6474.                                                                                 | 1.6  | 92        |
| 26 | Evidence of Shear-Induced Fluid Fracture in Telechelic Polymer Networks. Physical Review Letters,<br>2001, 87, 048303.                                                                                                     | 2.9  | 90        |
| 27 | Structure of colloidal complexes obtained from neutral/poly- electrolyte copolymers and oppositely charged surfactants. European Physical Journal E, 2002, 9, 301-311.                                                     | 0.7  | 90        |
| 28 | Colloidal Complexes Obtained from Charged Block Copolymers and Surfactants: A Comparison<br>between Small-Angle Neutron Scattering, Cryo-TEM, and Simulationsâ€. Journal of Physical Chemistry<br>B, 2003, 107, 8111-8118. | 1.2  | 89        |
| 29 | Evidence of a two-step process and pathway dependency in the thermodynamics of poly(diallyldimethylammonium chloride)/poly(sodium acrylate) complexation. Soft Matter, 2014, 10, 9496-9505.                                | 1.2  | 87        |
| 30 | Towards a better understanding on agglomeration mechanisms and thermodynamic properties of TiO2 nanoparticles interacting with natural organic matter. Water Research, 2015, 80, 139-148.                                  | 5.3  | 87        |
| 31 | Poly(acrylic acid)-coated iron oxide nanoparticles: Quantitative evaluation of the coating properties and applications for the removal of a pollutant dye. Journal of Colloid and Interface Science, 2013, 395, 24-30.     | 5.0  | 85        |
| 32 | Polymer-Coated Cerium Oxide Nanoparticles as Oxidoreductase-like Catalysts. ACS Applied Materials<br>& Interfaces, 2020, 12, 42056-42066.                                                                                  | 4.0  | 83        |
| 33 | Rheology of Wormlike Micelles: Equilibrium Properties and Shear Banding Transitions. , 2006, , 667-720.                                                                                                                    |      | 82        |
| 34 | Nonlinear rheology of telechelic polymer networks. Journal of Rheology, 2001, 45, 477-492.                                                                                                                                 | 1.3  | 79        |
| 35 | Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. Small, 2021, 17, e2102342.                                                                                                                     | 5.2  | 79        |
| 36 | Synthesis and Linear Viscoelasticity of Fluorinated Hydrophobically Modified Ethoxylated Urethanes<br>(F-HEUR). Macromolecules, 1998, 31, 1305-1311.                                                                       | 2.2  | 77        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Flow-structure relationship of shear-thickening surfactant solutions. Europhysics Letters, 1998, 41, 677-682.                                                                                                                                          | 0.7 | 75        |
| 38 | Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state. Nanotechnology, 2010, 21, 145103.                                                                               | 1.3 | 75        |
| 39 | Structure and rheology of concentrated wormlike micelles [4]at the shear-induced isotropic-to-nematic transition. European Physical Journal B, 1998, 5, 67-77.                                                                                         | 0.6 | 74        |
| 40 | Chemical analysis and aqueous solution properties of charged amphiphilic block copolymers<br>PBA-b-PAA synthesized by MADIX®. Journal of Colloid and Interface Science, 2007, 316, 897-911.                                                            | 5.0 | 73        |
| 41 | Size Distribution of Superparamagnetic Particles Determined by Magnetic Sedimentation. Langmuir, 2007, 23, 2993-2999.                                                                                                                                  | 1.6 | 72        |
| 42 | Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable<br>Stealth Iron Oxide Nanoparticles. Biomacromolecules, 2014, 15, 3171-3179.                                                                               | 2.6 | 71        |
| 43 | A health concern regarding the protein corona, aggregation and disaggregation. Biochimica Et<br>Biophysica Acta - General Subjects, 2019, 1863, 971-991.                                                                                               | 1.1 | 71        |
| 44 | Time scales in shear banding of wormlike micelles. Europhysics Letters, 2003, 62, 230-236.                                                                                                                                                             | 0.7 | 67        |
| 45 | Novel core-shell structure for colloids made of neutral/polyelectrolyte diblock copolymers and oppositely charged surfactants. Europhysics Letters, 2002, 58, 912-918.                                                                                 | 0.7 | 63        |
| 46 | Macroscopic Response of Wormlike Micelles to Elongational Flow. Langmuir, 1996, 12, 6309-6314.                                                                                                                                                         | 1.6 | 62        |
| 47 | Growth mechanism of nanostructured superparamagnetic rods obtained by electrostatic co-assembly.<br>Soft Matter, 2010, 6, 1997.                                                                                                                        | 1.2 | 62        |
| 48 | Stoichiometry of Electrostatic Complexes Determined by Light Scattering. Macromolecules, 2007, 40, 4260-4266.                                                                                                                                          | 2.2 | 61        |
| 49 | Nanoparticle Aggregation Controlled by Desalting Kinetics. Journal of Physical Chemistry C, 2009, 113, 16371-16379.                                                                                                                                    | 1.5 | 61        |
| 50 | Insight in shear banding under transient flow. Physical Review E, 2001, 63, 022501.                                                                                                                                                                    | 0.8 | 60        |
| 51 | Superparamagnetic iron oxide polyacrylic acid coated Î <sup>3</sup> -Fe2O3 nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice. Toxicology and Applied Pharmacology, 2013, 266, 276-288. | 1.3 | 60        |
| 52 | Stable oxide nanoparticle clusters obtained by complexation. Journal of Colloid and Interface Science, 2006, 303, 315-318.                                                                                                                             | 5.0 | 59        |
| 53 | Magnetic micropillars as a tool to govern substrate deformations. Lab on A Chip, 2011, 11, 2630.                                                                                                                                                       | 3.1 | 59        |
| 54 | Probing Oppositely Charged Surfactant and Copolymer Interactions by Isothermal Titration Microcalorimetry. Langmuir, 2010, 26, 11750-11758.                                                                                                            | 1.6 | 58        |

4

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification of flow mechanisms for a soft crystal. European Physical Journal B, 1998, 3, 59-72.                                                                     | 0.6 | 57        |
| 56 | Magnetic wire-based sensors for the microrheology of complex fluids. Physical Review E, 2013, 88, 062306.                                                              | 0.8 | 57        |
| 57 | Evidence of overcharging in the complexation between oppositely charged polymers and surfactants.<br>Journal of Chemical Physics, 2005, 123, 164703.                   | 1.2 | 54        |
| 58 | Controlling electrostatic co-assembly using ion-containing copolymers: From surfactants to nanoparticles. Advances in Colloid and Interface Science, 2011, 167, 38-48. | 7.0 | 54        |
| 59 | Orientation and twins separation in a micellar cubic crystal under oscillating shear. Physical Review B, 1996, 54, 14869-14872.                                        | 1.1 | 53        |
| 60 | Compaction and condensation of DNA mediated by the C-terminal domain of Hfq. Nucleic Acids Research, 2017, 45, 7299-7308.                                              | 6.5 | 50        |
| 61 | Shear-Induced Orientations and Textures of Nematic Living Polymers. Macromolecules, 1995, 28, 1681-1687.                                                               | 2.2 | 49        |
| 62 | Shear-thickening transition in surfactant solutions: New experimental features from rheology and flow birefringence. European Physical Journal E, 2000, 2, 343.        | 0.7 | 47        |
| 63 | Perfluoroalkyl End-Capped Poly(ethylene oxide). Synthesis, Characterization, and Rheological<br>Behavior in Aqueous Solution. Macromolecules, 2003, 36, 449-457.       | 2.2 | 46        |
| 64 | Shear-induced micellar growth in dilute surfactant solutions. Europhysics Letters, 2001, 54, 605-611.                                                                  | 0.7 | 45        |
| 65 | Dynamics of paramagnetic nanostructured rods under rotating field. Journal of Magnetism and Magnetic Materials, 2011, 323, 1309-1313.                                  | 1.0 | 44        |
| 66 | Low-Temperature Acoustic Properties of(KBr)1â^'x(KCN)xin the Orientationally Disordered State.<br>Physical Review Letters, 1985, 55, 2013-2016.                        | 2.9 | 42        |
| 67 | Metastable versus unstable transients at the onset of a shear-induced phase transition. Physical Review E, 1999, 60, 4268-4271.                                        | 0.8 | 42        |
| 68 | Interfacial Activity of Phosphonated-PEG Functionalized Cerium Oxide Nanoparticles. Langmuir, 2012, 28, 11448-11456.                                                   | 1.6 | 41        |
| 69 | The role of surface charge in the interaction of nanoparticles with model pulmonary surfactants.<br>Soft Matter, 2018, 14, 5764-5774.                                  | 1.2 | 41        |
| 70 | Kinetics of the Shear-Thickening Transition Observed in Dilute Surfactant Solutions and Investigated by Flow Birefringence. Langmuir, 2002, 18, 7279-7286.             | 1.6 | 40        |
| 71 | <i>In vitro</i> toxicity of nanoceria: effect of coating and stability in biofluids. Nanotoxicology, 2014, 8, 1-13.                                                    | 1.6 | 40        |
| 72 | Magnetic Nanowires Generated via the Waterborne Desalting Transition Pathway. ACS Applied Materials & Amp; Interfaces, 2011, 3, 1049-1054.                             | 4.0 | 34        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Biophysicochemical Interaction of a Clinical Pulmonary Surfactant with Nanoalumina. Langmuir, 2015, 31, 7346-7354.                                                                                              | 1.6 | 33        |
| 74 | The shear-induced transition between oriented textures and layer-sliding-mediated flows in a micellar cubic crystal. Journal of Physics Condensed Matter, 1996, 8, 9513-9517.                                   | 0.7 | 32        |
| 75 | Rheology of nematic wormlike micelles. Journal of Rheology, 1995, 39, 725-741.                                                                                                                                  | 1.3 | 31        |
| 76 | Polymerâ^'Nanoparticle Complexes:  From Dilute Solution to Solid State. Journal of Physical Chemistry<br>B, 2006, 110, 19140-19146.                                                                             | 1.2 | 31        |
| 77 | Stability and Adsorption Properties of Electrostatic Complexes:  Design of Hybrid Nanostructures for<br>Coating Applications. Langmuir, 2007, 23, 11996-11998.                                                  | 1.6 | 31        |
| 78 | Solvatochromic dissociation of non-covalent fluorescent organic nanoparticles upon cell internalization. Physical Chemistry Chemical Physics, 2011, 13, 13268.                                                  | 1.3 | 31        |
| 79 | Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water nematics. Journal of Rheology, 2001, 45, 29-48.                                                        | 1.3 | 29        |
| 80 | Universal scattering behavior of coassembled nanoparticle-polymer clusters. Physical Review E, 2008, 78, 040401.                                                                                                | 0.8 | 29        |
| 81 | Intracellular micro-rheology probed by micron-sized wires. Biomaterials, 2013, 34, 6299-6305.                                                                                                                   | 5.7 | 29        |
| 82 | Phase diagram of the dipolar glassK1â^'x(NH4)xI. Physical Review B, 1992, 46, 13747-13750.                                                                                                                      | 1.1 | 28        |
| 83 | Influence of the Formulation Process in Electrostatic Assembly of Nanoparticles and<br>Macromolecules in Aqueous Solution: The Interaction Pathway. Journal of Physical Chemistry C, 2010,<br>114, 16373-16381. | 1.5 | 28        |
| 84 | Influence of the Formulation Process in Electrostatic Assembly of Nanoparticles and<br>Macromolecules in Aqueous Solution: The Mixing Pathway. Journal of Physical Chemistry C, 2010, 114,<br>12870-12877.      | 1.5 | 28        |
| 85 | Supported pulmonary surfactant bilayers on silica nanoparticles: formulation, stability and impact on<br>lung epithelial cells. Nanoscale, 2017, 9, 14967-14978.                                                | 2.8 | 28        |
| 86 | Organic versus hybrid coacervate complexes: co-assembly and adsorption properties. Soft Matter, 2008, 4, 577.                                                                                                   | 1.2 | 27        |
| 87 | Self-Assembly of Complex Salts of Cationic Surfactants and Anionic–Neutral Block Copolymers.<br>Dispersions with Liquid-Crystalline Internal Structure. Langmuir, 2013, 29, 14024-14033.                        | 1.6 | 27        |
| 88 | Fabric Softener–Cellulose Nanocrystal Interaction: A Model for Assessing Surfactant Deposition on<br>Cotton. Journal of Physical Chemistry B, 2017, 121, 2299-2307.                                             | 1.2 | 26        |
| 89 | Pulmonary surfactant inhibition of nanoparticle uptake by alveolar epithelial cells. Scientific<br>Reports, 2020, 10, 19436.                                                                                    | 1.6 | 26        |
| 90 | Electrostatic self-assembly in polyelectrolyte-neutral block copolymers and oppositely charged surfactant solutions. Physica B: Condensed Matter, 2004, 350, 204-206.                                           | 1.3 | 25        |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Electrostatic Coâ€assembly of Magnetic Nanoparticles and Fluorescent Nanospheres: A Versatile<br>Approach Towards Bimodal Nanorods. Small, 2009, 5, 2533-2536.                                                                                           | 5.2 | 25        |
| 92  | Isothermal titration calorimetry as a powerful tool to quantify and better understand<br>agglomeration mechanisms during interaction processes between TiO <sub>2</sub> nanoparticles and<br>humic acids. Environmental Science: Nano, 2015, 2, 541-550. | 2.2 | 25        |
| 93  | Serum Protein-Resistant Behavior of Multisite-Bound Poly(ethylene glycol) Chains on Iron Oxide<br>Surfaces. ACS Omega, 2017, 2, 1309-1320.                                                                                                               | 1.6 | 25        |
| 94  | Polyelectrolyte assisted charge titration spectrometry: Applications to latex and oxide nanoparticles.<br>Journal of Colloid and Interface Science, 2016, 475, 36-45.                                                                                    | 5.0 | 24        |
| 95  | Tumbling Behaviour of Nematic Worm-like Micelles under Shear Flow. Europhysics Letters, 1995, 32,<br>137-142.                                                                                                                                            | 0.7 | 23        |
| 96  | Delayed hepatic uptake of multi-phosphonic acid poly(ethylene glycol) coated iron oxide measured by real-time magnetic resonance imaging. RSC Advances, 2016, 6, 63788-63800.                                                                            | 1.7 | 23        |
| 97  | Effect of Nanoparticles on the Bulk Shear Viscosity of a Lung Surfactant Fluid. ACS Nano, 2020, 14, 466-475.                                                                                                                                             | 7.3 | 23        |
| 98  | Brake wear (nano)particle characterization and toxicity on airway epithelial cells in vitro.<br>Environmental Science: Nano, 2018, 5, 1036-1044.                                                                                                         | 2.2 | 22        |
| 99  | Design of eco-friendly fabric softeners: Structure, rheology and interaction with cellulose nanocrystals. Journal of Colloid and Interface Science, 2018, 525, 206-215.                                                                                  | 5.0 | 22        |
| 100 | Interactions between DNA and the Hfq Amyloid-like Region Trigger a Viscoelastic Response.<br>Biomacromolecules, 2020, 21, 3668-3677.                                                                                                                     | 2.6 | 22        |
| 101 | Alveolar mimics with periodic strain and its effect on the cell layer formation. Biotechnology and Bioengineering, 2020, 117, 2827-2841.                                                                                                                 | 1.7 | 21        |
| 102 | Thirtyâ€Femtogram Detection of Iron in Mammalian Cells. Small, 2012, 8, 2036-2044.                                                                                                                                                                       | 5.2 | 20        |
| 103 | Magnetic microrods as a tool for microrheology. Soft Matter, 2015, 11, 2563-2569.                                                                                                                                                                        | 1.2 | 20        |
| 104 | Antioxidant Activity and Toxicity Study of Cerium Oxide Nanoparticles Stabilized with Innovative Functional Copolymers. Advanced Healthcare Materials, 2021, 10, e2100059.                                                                               | 3.9 | 20        |
| 105 | Phonon Softening, Orientational Slowing-Down and Diffuse Scattering in (KI) <sub> 1- <i>x</i> </sub> (ND <sub>4</sub> I) <sub> <i>x</i> </sub> Mixed Crystals. Europhysics Letters, 1991, 16, 91-96.                                                     | 0.7 | 19        |
| 106 | Interactions Between Polymers and Nanoparticles: Formation of "Supermicellar―Hybrid Aggregates.<br>Soft Materials, 2004, 2, 71-84.                                                                                                                       | 0.8 | 19        |
| 107 | Rotational microrheology of Maxwell fluids using micron-sized wires. Soft Matter, 2014, 10, 1167.                                                                                                                                                        | 1.2 | 18        |
| 108 | Monophosphonic versus Multiphosphonic Acid Based PEGylated Polymers for Functionalization and<br>Stabilization of Metal (Ce, Fe, Ti, Al) Oxide Nanoparticles in Biological Media. Advanced Materials<br>Interfaces, 2019, 6, 1801814.                    | 1.9 | 18        |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | 3D rotational diffusion of micrometric wires using 2D video microscopy. Europhysics Letters, 2012, 97, 30008.                                                                          | 0.7 | 17        |
| 110 | Phase Behavior of Polyelectrolyte Block Copolymers in Mixed Solvents. Macromolecules, 2008, 41, 1872-1880.                                                                             | 2.2 | 16        |
| 111 | Design and Applications of a Fluorescent Labeling Technique for Lipid and Surfactant Preformed Vesicles. ACS Omega, 2019, 4, 10485-10493.                                              | 1.6 | 16        |
| 112 | On the rheology of pulmonary surfactant: Effects of concentration and consequences for the surfactant replacement therapy. Colloids and Surfaces B: Biointerfaces, 2019, 178, 337-345. | 2.5 | 16        |
| 113 | Transient 1–2 plane small-angle x-ray scattering measurements of micellar orientation in aligning and tumbling nematic surfactant solutions. Journal of Rheology, 2002, 46, 927.       | 1.3 | 15        |
| 114 | Glasslike thermal properties and isotope effect inRb1â^'x(NH4)xH2PO4mixed crystals. Physical Review<br>Letters, 1991, 67, 93-96.                                                       | 2.9 | 14        |
| 115 | Wireâ€Active Microrheology to Differentiate Viscoelastic Liquids from Soft Solids. ChemPhysChem,<br>2016, 17, 4134-4143.                                                               | 1.0 | 14        |
| 116 | Magnetic wire active microrheology of human respiratory mucus. Soft Matter, 2021, 17, 7585-7595.                                                                                       | 1.2 | 14        |
| 117 | Acoustic properties and relationship with the low frequency light scattering in an optical glass.<br>Journal of Non-Crystalline Solids, 1986, 87, 70-85.                               | 1.5 | 13        |
| 118 | Anomalous thermoelastic behavior of (KI)1-x(NH4I)x. Solid State Communications, 1990, 74, 1041-1045.                                                                                   | 0.9 | 13        |
| 119 | Nanoparticle–Protein Interaction: Demystifying the Correlation between Protein Corona and Aggregation Phenomena. ACS Applied Materials & Interfaces, 2022, 14, 28559-28569.            | 4.0 | 13        |
| 120 | Stabilization and controlled association of inorganic nanoparticles using block copolymers.<br>Europhysics Letters, 2005, 69, 284-290.                                                 | 0.7 | 12        |
| 121 | Stabilization and controlled association of superparamagnetic nanoparticles using block copolymers.<br>Journal of Magnetism and Magnetic Materials, 2009, 321, 667-670.                | 1.0 | 12        |
| 122 | Common trends in the epidemic of Covid-19 disease. European Physical Journal Plus, 2020, 135, 517.                                                                                     | 1.2 | 12        |
| 123 | Brillouin-scattering study of the orientational glass transition in (KCl)1â^'x(KCN)xmixed crystals.<br>Physical Review B, 1989, 39, 13451-13456.                                       | 1.1 | 11        |
| 124 | Tumbling dynamics in a nematic surfactant solution in transient shear flows. Journal of Rheology, 1999, 43, 765-779.                                                                   | 1.3 | 11        |
| 125 | Calorimetric investigations of (NaCN)1â^'x(KCN)xglasses. Physical Review B, 1990, 42, 7596-7603.                                                                                       | 1.1 | 10        |
| 126 | Effect of pH on the Complex Coacervation and on the Formation of Layers of Sodium Alginate and PDADMAC. Langmuir, 2020, 36, 2510-2523.                                                 | 1.6 | 10        |

| #   | Article                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Reorientation kinetics of superparamagnetic nanostructured rods. Journal of Physics Condensed<br>Matter, 2008, 20, 494216.                                                        | 0.7 | 9         |
| 128 | Sphere-to-cylinder transition in hierarchical electrostatic complexes. Colloid and Polymer Science, 2009, 287, 801-810.                                                           | 1.0 | 9         |
| 129 | Revealing the pulmonary surfactant corona on silica nanoparticles by cryo-transmission electron microscopy. Nanoscale Advances, 2020, 2, 642-647.                                 | 2.2 | 9         |
| 130 | Versatile Coating Platform for Metal Oxide Nanoparticles: Applications to Materials and Biological Science. Langmuir, 2022, 38, 5323-5338.                                        | 1.6 | 9         |
| 131 | Inelastic and quasi-elastic light scattering in (NaCN)1?x(KCN)x quadrupolar glasses. European Physical<br>Journal B, 1990, 80, 203-206.                                           | 0.6 | 8         |
| 132 | Raman investigation of rotational and translational excitations in K1â^'x(NH4)xI mixed crystals. Journal of Chemical Physics, 1992, 96, 4896-4903.                                | 1.2 | 8         |
| 133 | Protonation of Lipids Impacts the Supramolecular and Biological Properties of Their Self-Assembly.<br>Langmuir, 2011, 27, 12336-12345.                                            | 1.6 | 8         |
| 134 | Nanoparticle-Lipid Interaction: Job Scattering Plots to Differentiate Vesicle Aggregation from Supported Lipid Bilayer Formation. Colloids and Interfaces, 2018, 2, 50.           | 0.9 | 8         |
| 135 | Template-Free Preparation of Thermoresponsive Magnetic Cilia Compatible with Biological Conditions.<br>Journal of Physical Chemistry C, 2020, 124, 26068-26075.                   | 1.5 | 8         |
| 136 | High-frequency dielectric study of the dynamics of (KBr)1?x (KCN) x mixed crystals. European Physical<br>Journal B, 1988, 70, 485-490.                                            | 0.6 | 7         |
| 137 | Frozen-in correlations inK1â^'x(NH4)xI mixed crystals: A Raman-scattering study. Physical Review B, 1994,<br>49, 15588-15593.                                                     | 1.1 | 7         |
| 138 | Stimuli-responsive assembly of iron oxide nanoparticles into magnetic flexible filaments. Emergent<br>Materials, 2021, 4, 1351-1362.                                              | 3.2 | 7         |
| 139 | Silicone incorporation into an esterquat based fabric softener in presence of guar polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126175. | 2.3 | 7         |
| 140 | Low-temperature specific heat of orientational glasses. European Physical Journal B, 1992, 87, 213-217.                                                                           | 0.6 | 6         |
| 141 | Coherent inelastic neutron scattering in K1-x(ND4)xl mixed crystals. Journal of Physics Condensed<br>Matter, 1992, 4, 9235-9246.                                                  | 0.7 | 5         |
| 142 | Sub-piconewton force detection using micron-size wire deflections. RSC Advances, 2013, 3, 17254.                                                                                  | 1.7 | 5         |
| 143 | Surfactant-Triggered Disassembly of Electrostatic Complexes Probed at Optical and Quartz Crystal<br>Microbalance Length Scales. Langmuir, 2014, 30, 5620-5627.                    | 1.6 | 5         |
| 144 | Microrheology of viscoelastic solutions studied by magnetic rotational spectroscopy. International<br>Journal of Nanotechnology, 2016, 13, 597.                                   | 0.1 | 5         |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Cellulose Nanocrystals Mimicking Micron-Sized Fibers to Assess the Deposition of Latex Particles on Cotton. ACS Applied Polymer Materials, 2021, 3, 3009-3018.                                                   | 2.0 | 5         |
| 146 | Viscoelasticity of model surfactant solutions determined by magnetic rotation spectroscopy.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 143-149.                             | 2.3 | 4         |
| 147 | Adsorption of a fabric conditioner on cellulose nanocrystals: synergistic effects of surfactant vesicles and polysaccharides on softness properties. Cellulose, 2021, 28, 2551-2566.                             | 2.4 | 4         |
| 148 | A mathematical finance approach to the stochastic and intermittent viscosity fluctuations in living cells. Soft Matter, 2020, 16, 5959-5969.                                                                     | 1.2 | 3         |
| 149 | Orientational Glass Transition in (KBr) <sub> 1- <i>x</i> </sub> (KCN) <sub> <i>x</i> </sub> Quadrupolar Glasses: A Raman Scattering Study. Europhysics Letters, 1990, 13, 273-278.                              | 0.7 | 2         |
| 150 | Elastic properties of (KI) <sub>1-x</sub> (NH <sub>4</sub> I) <sub>x</sub> . Ferroelectrics, 1992, 127, 275-278.                                                                                                 | 0.3 | 2         |
| 151 | The role of the coating and aggregation state in the interactions between iron oxide nanoparticles and 3T3 fibroblasts. Physics Procedia, 2010, 9, 266-269.                                                      | 1.2 | 2         |
| 152 | Assembly and Characterizations of Bifunctional Fluorescent and Magnetic Microneedles With One<br>Decade Length Tunability. Advanced Functional Materials, 2017, 27, 1700362.                                     | 7.8 | 2         |
| 153 | The desalting/salting pathway: a route to form metastable aggregates with tuneable morphologies and lifetimes. Soft Matter, 2021, 17, 8496-8505.                                                                 | 1.2 | 2         |
| 154 | Advanced Eco-Friendly Formulations of Guar Biopolymer-Based Textile Conditioners. Materials, 2021, 14, 5749.                                                                                                     | 1.3 | 2         |
| 155 | Sol-gel transition induced by alumina nanoparticles in a model pulmonary surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128974.                                        | 2.3 | 2         |
| 156 | Thermal expansion and phase transitions in the mixed-crystal system (KBr)1-x(KCN)xbetween 5 and 300K.<br>Journal of Physics C: Solid State Physics, 1986, 19, L433-L439.                                         | 1.5 | 1         |
| 157 | Orientational behavior of an assembly of superparmagnetic rods. Physics Procedia, 2010, 9, 15-19.                                                                                                                | 1.2 | 1         |
| 158 | Self-assembled NEMS for pN force detection. , 2011, , .                                                                                                                                                          |     | 1         |
| 159 | Orientational glass transition in quadrupolar glasses. Phase Transitions, 1991, 32, 145-147.                                                                                                                     | 0.6 | 0         |
| 160 | Organic nanoparticles as a central plateform of magnetofluorescent nano-assemblies toward two-photon bioimaging applications. Proceedings of SPIE, 2012, , .                                                     | 0.8 | 0         |
| 161 | Giant Vesicles with Encapsulated Magnetic Nanowires as Versatile Carriers, Transported via Rotating<br>and Nonhomogeneous Magnetic Fields. Particle and Particle Systems Characterization, 2019, 36,<br>1900239. | 1.2 | 0         |
| 162 | Fabrication of Magnetic Clusters and Rods using Electrostatic Co-assembly. , 2010, , 35-39.                                                                                                                      |     | 0         |

Fabrication of Magnetic Clusters and Rods using Electrostatic Co-assembly. , 2010, , 35-39. 162

| #   | Article                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Rheology and NMR Measurements of Sodium Dodecyl Sulphate/Decanol/Water Nematics. , 1998, , 537-538.                                 |     | 0         |
| 164 | Magnetic wire as stress controlled micro-rheometer for cytoplasm viscosity measurements. , 2018, , .                                |     | 0         |
| 165 | Microscale viscosity imaging using heterodyne holographic analysis of nanorods rotation. , 2021, , .                                |     | 0         |
| 166 | GLASS-LIKE ANOMALIES IN THE HYPERSONIC PROPERTIES OF OH- DOPED KCI CRYSTALS. Journal De Physique Colloque, 1982, 43, C9-517-C9-519. | 0.2 | 0         |