

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2193301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maintenance of NAD+ Homeostasis in Skeletal Muscle during Aging and Exercise. Cells, 2022, 11, 710.	4.1	13
2	Oxidative stress: an evolving definition. Faculty Reviews, 2021, 10, 13.	3.9	33
3	NAD+ deficit, protein acetylation and muscle aging. Aging, 2021, 13, 14546-14548.	3.1	3
4	Redox Signaling and Sarcopenia: Searching for the Primary Suspect. International Journal of Molecular Sciences, 2021, 22, 9045.	4.1	25
5	Redox Signaling. , 2021, , 4165-4174.		Ο
6	Avenanthramide supplementation reduces eccentric exercise-induced inflammation in young men and women. Journal of the International Society of Sports Nutrition, 2020, 17, 41.	3.9	18
7	The COVID-19 pandemic and physical activity. Sports Medicine and Health Science, 2020, 2, 55-64.	2.0	354
8	Muscle Disuse Atrophy Caused by Discord of Intracellular Signaling. Antioxidants and Redox Signaling, 2020, 33, 727-744.	5.4	10
9	Aging alters acetylation status in skeletal and cardiac muscles. GeroScience, 2020, 42, 963-976.	4.6	38
10	Redox Signaling. , 2020, , 1-10.		0
11	Data on in vivo PGC-1alpha overexpression model via local transfection in aged mouse muscle. Data in Brief, 2019, 22, 199-203.	1.0	4
12	PGC-1α Overexpression via Local In Vivo Transfection in Mouse Skeletal Muscle. Methods in Molecular Biology, 2019, 1966, 151-161.	0.9	4
13	Avenanthramides attenuate inflammation and atrophy in muscle cells. Journal of Sport and Health Science, 2019, 8, 189-195.	6.5	18
14	Intensified mitophagy in skeletal muscle with aging is downregulated by PGC-1alpha overexpression in vivo. Free Radical Biology and Medicine, 2019, 130, 361-368.	2.9	77
15	Mitochondrial dysregulation and muscle disuse atrophy. F1000Research, 2019, 8, 1621.	1.6	56
16	Anti-inflammatory effect of avenanthramides via NF-κB pathways in C2C12 skeletal muscle cells. Free Radical Biology and Medicine, 2018, 117, 30-36.	2.9	36
17	Data on the mode of binding between avenanthramides and IKKÎ ² domains in a docking model. Data in Brief, 2018, 17, 994-997.	1.0	3
18	Absorption and Elimination of Oat Avenanthramides in Humans after Acute Consumption of Oat Cookies. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-7.	4.0	15

Li Li Ji

#	Article	IF	CITATIONS
19	Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	48
20	Role of Redox Signaling and Inflammation in Skeletal Muscle Adaptations to Training. Antioxidants, 2016, 5, 48.	5.1	34
21	Exerciseâ€induced oxidative stress: past, present and future. Journal of Physiology, 2016, 594, 5081-5092.	2.9	232
22	Exercise-induced hormesis and skeletal muscle health. Free Radical Biology and Medicine, 2016, 98, 113-122.	2.9	103
23	PGC-1α overexpression via local transfection attenuates mitophagy pathway in muscle disuse atrophy. Free Radical Biology and Medicine, 2016, 93, 32-40.	2.9	72
24	Avenanthramide supplementation attenuates eccentric exercise-inflicted blood inflammatory markers in women. European Journal of Applied Physiology, 2016, 116, 67-76.	2.5	33
25	Redox signaling in skeletal muscle: role of aging and exercise. American Journal of Physiology - Advances in Physiology Education, 2015, 39, 352-359.	1.6	55
26	Role of PGC-1α in Sarcopenia: Etiology and Potential Intervention - A Mini-Review. Gerontology, 2015, 61, 139-148.	2.8	57
27	PGCâ€lα overexpression by <i>in vivo</i> transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization. FASEB Journal, 2015, 29, 4092-4106.	0.5	68
28	Exercise-Induced Neuroprotection of Hippocampus in APP/PS1 Transgenic Mice via Upregulation of Mitochondrial 8-Oxoguanine DNA Glycosylase. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-14.	4.0	84
29	Avenanthramide supplementation attenuates exercise-induced inflammation in postmenopausal women. Nutrition Journal, 2014, 13, 21.	3.4	39
30	Muscle immobilization and remobilization downregulates PGC- $1\hat{l}$ ± signaling and the mitochondrial biogenesis pathway. Journal of Applied Physiology, 2013, 115, 1618-1625.	2.5	61
31	The protective role of PGCâ€1α in the recovery of muscle disuse atrophy. FASEB Journal, 2013, 27, 940.5.	0.5	0
32	Reactive Oxygen Species: Impact on Skeletal Muscle. , 2011, 1, 941-969.		346
33	Avenanthramides Are Bioavailable and Accumulate in Hepatic, Cardiac, and Skeletal Muscle Tissue Following Oral Gavage in Rats. Journal of Agricultural and Food Chemistry, 2011, 59, 6438-6443.	5.2	52
34	Exercise-Induced Hormesis may Help Healthy Aging. Dose-Response, 2010, 8, dose-response.0.	1.6	32
35	Challenges in Exercise Physiology Research and Education. Quest, 2008, 60, 13-18.	1.2	3
36	Role of nuclear factor κB and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation. Applied Physiology, Nutrition and Metabolism, 2007, 32, 930-935.	1.9	67

Li Li Ji

#	Article	IF	CITATIONS
37	ROS play a role in regulating exerciseâ€induced mitochondrial biogenic pathway FASEB Journal, 2007, 21, A815.	0.5	0
38	Avenanthramide bioavailability and liver absorption in rats. FASEB Journal, 2007, 21, A727.	0.5	0
39	Aging, Exercise, and Phytochemicals Promises and Pitfalls. Annals of the New York Academy of Sciences, 2004, 1019, 453-461.	3.8	18
40	Effects of avenanthramides on oxidant generation and antioxidant enzyme activity in exercised rats. Nutrition Research, 2003, 23, 1579-1590.	2.9	77
41	Exerciseâ€induced Modulation of Antioxidant Defense. Annals of the New York Academy of Sciences, 2002, 959, 82-92.	3.8	269
42	Exercise Down-Regulates Hepatic Fatty Acid Synthase in Streptozotocin-Treated Rats. Journal of Nutrition, 2001, 131, 2252-2259.	2.9	11
43	Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. European Journal of Applied Physiology, 2001, 84, 1-6.	2.5	312
44	Exercise at Old Age: Does It Increase or Alleviate Oxidative Stress?. Annals of the New York Academy of Sciences, 2001, 928, 236-247.	3.8	147
45	Effects of swimming training on three superoxide dismutase isoenzymes in mouse tissues. Journal of Applied Physiology, 2000, 88, 649-654.	2.5	54
46	Improved cardiac performance after ischemia in aged rats supplemented with vitamin E and α-lipoic acid. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R2149-R2155.	1.8	53
47	Antioxidants and Oxidative Stress in Exercise. Proceedings of the Society for Experimental Biology and Medicine, 1999, 222, 283-292.	1.8	542
48	Oxidative Stress and Aging: Role of Exercise and Its Influences on Antioxidant Systems. Annals of the New York Academy of Sciences, 1998, 854, 102-117.	3.8	141
49	Oxidative stress and mitochondrial function in skeletal muscle: Effects of aging and exercise training. Age, 1998, 21, 109-117.	3.0	38
50	Exercise and oxidative stress: Sources of free radicals and their impact on antioxidant systems. Age, 1997, 20, 91-106.	3.0	73
51	Effect of acute exercise on glutathione deficient heart. Molecular and Cellular Biochemistry, 1996, 156, 17-24.	3.1	23