
Stefano Gialanella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2193220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of ultrafine particles from hardfacing coated brake rotors. Friction, 2023, 11, 125-140.	3.4	3
2	The Role of Graphitic Carbon Nitride in the Formulation of Copper-Free Friction Composites Designed for Automotive Brake Pads. Metals, 2022, 12, 123.	1.0	8
3	Dry Sliding Behavior and Particulate Emissions of a SiC-graphite Composite Friction Material Paired with HVOF-Coated Counterface. Atmosphere, 2022, 13, 296.	1.0	9
4	Microstructural and Tribological Evaluation of Brake Disc Refurbishing Using Fe-Based Coating via Directed Energy Deposition. Metals, 2022, 12, 465.	1.0	3
5	Pin-on-disc study of dry sliding behavior of Co-free HVOF-coated disc tested against different friction materials. Friction, 2021, 9, 1242-1258.	3.4	9
6	Laser Cladding Treatment for Refurbishing Disc Brake Rotors: Environmental and Tribological Analysis. Tribology Letters, 2021, 69, 1.	1.2	12
7	Airborne particulate matter from brake systems: An assessment of the relevant tribological formation mechanisms. Wear, 2021, 478-479, 203883.	1.5	10
8	A new sample preparation protocol for SEM and TEM particulate matter analysis. Ultramicroscopy, 2021, 230, 113365.	0.8	6
9	Characterization of airborne wear debris produced by brake pads pressed against HVOF-coated discs. Friction, 2020, 8, 421-432.	3.4	28
10	Friction, wear and airborne particle emission from Cu-free brake materials. Tribology International, 2020, 141, 105959.	3.0	50
11	A pin-on-disc study on the dry sliding behavior of a Cu-free friction material containing different types of natural graphite. Wear, 2020, 442-443, 203157.	1.5	28
12	Experimental Characterization Protocols for Wear Products from Disc Brake Materials. Atmosphere, 2020, 11, 1102.	1.0	29
13	The role of scorching treatment on the wear and emission behavior of friction materials with and without copper. Wear, 2020, 460-461, 203480.	1.5	8
14	Sliding Behavior and Particle Emissions of Cu-Free Friction Materials with Different Contents of Phenolic Resin. Tribology Transactions, 2020, 63, 770-779.	1.1	14
15	A Study of the Effect of Brake Pad Scorching on Tribology and Airborne Particle Emissions. Atmosphere, 2020, 11, 488.	1.0	10
16	A combined experimental approach to the study of ancient coins and its application the Venetian "sesino― Nuclear Instruments & Methods in Physics Research B, 2019, 455, 108-113.	0.6	2
17	A critical comparison of dynamometer data with pin-on-disc data for the same two friction material pairs – A case study. Wear, 2019, 424-425, 40-47.	1.5	24
18	Thermal behavior of a phenolic resin for brake pad manufacturing. Journal of Thermal Analysis and Calorimetry, 2019, 137, 759-766.	2.0	28

STEFANO GIALANELLA

#	Article	IF	CITATIONS
19	Characterization of the <i>mistura</i> alloy used for Venetian <i>sesino</i> coins: 16th century. X-Ray Spectrometry, 2019, 48, 8-20.	0.9	3
20	Sliding Behaviour of Friction Material Against Cermet Coatings: Pin-on-Disc Study of the Running-in Stage. Tribology Letters, 2018, 66, 1.	1.2	22
21	Mineralogical investigations using <scp>XRD</scp> , <scp>XRF</scp> , and Raman spectroscopy in a combined approach. Journal of Raman Spectroscopy, 2018, 49, 1023-1030.	1.2	20
22	Dry sliding behavior and friction layer formation in copper-free barite containing friction materials. Wear, 2018, 398-399, 191-200.	1.5	71
23	A concept for reducing PM 10 emissions for car brakes by 50%. Wear, 2018, 396-397, 135-145.	1.5	68
24	Pin-on-disc investigation on copper-free friction materials dry sliding against cast iron. Tribology International, 2018, 119, 73-81.	3.0	57
25	A preliminary investigation on the use of the pin-on-disc test to simulate off-brake friction and wear characteristics of friction materials. Wear, 2018, 410-411, 202-209.	1.5	41
26	Dry sliding of a low steel friction material against cast iron at different loads: Characterization of the friction layer and wear debris. Wear, 2017, 376-377, 1450-1459.	1,5	56
27	Pin-on-disc study of a friction material dry sliding against HVOF coated discs at room temperature and 300°C. Tribology International, 2017, 115, 89-99.	3.0	50
28	Room-Temperature Crystallization of CuS Nanostructures for Photothermal Applications through a Nanoreactor Approach. European Journal of Inorganic Chemistry, 2017, 2017, 2745-2754.	1.0	8
29	Pin-on-Disc Testing of Low-Metallic Friction Material Sliding Against HVOF Coated Cast Iron: Modelling of the Contact Temperature Evolution. Tribology Letters, 2017, 65, 1.	1.2	38
30	Pin-on-disc study of brake friction materials with ball-milled nanostructured components. Materials and Design, 2017, 115, 287-298.	3.3	48
31	Wear and Contact Temperature Evolution in Pin-on-Disc Tribotesting of Low-Metallic Friction Material Sliding Against Pearlitic Cast Iron. Tribology Letters, 2016, 62, 1.	1.2	41
32	Effect of roughness on the wear behavior of HVOF coatings dry sliding against a friction material. Wear, 2016, 368-369, 326-334.	1.5	78
33	Combined X-ray diffraction and fluorescence analysis in the cultural heritage field. Microchemical Journal, 2016, 126, 423-430.	2.3	15
34	Role of the friction layer in the high-temperature pin-on-disc study of a brake material. Wear, 2016, 346-347, 56-65.	1.5	124
35	Wear debris from brake system materials: A multi-analytical characterization approach. Tribology International, 2016, 94, 249-259.	3.0	48
36	An Effective Two-Emulsion Approach to the Synthesis of Doped ZnS Crystalline Nanostructures. European Journal of Inorganic Chemistry, 2015, 2015, 706-714.	1.0	13

#	Article	IF	CITATIONS
37	Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment. Environmental Pollution, 2015, 207, 211-219.	3.7	95
38	Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear, 2015, 322-323, 251-258.	1.5	144
39	Review: use of conifer needles as passive samplers of inorganic pollutants in air quality monitoring. Analytical Methods, 2014, 6, 6208.	1.3	25
40	Wear debris materials from brake systems: environmental and health issues. WIT Transactions on Ecology and the Environment, 2014, , .	0.0	24
41	Inorganic chemistry in a nanoreactor: Au/TiO2 nanocomposites by photolysis of a single-source precursor in miniemulsion. Nanoscale, 2013, 5, 10534.	2.8	21
42	Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids. Journal of Materials Chemistry, 2012, 22, 1620-1626.	6.7	40