Arkadiusz Brańka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2192281/publications.pdf

Version: 2024-02-01

393982 476904 46 909 19 29 citations g-index h-index papers 47 47 47 657 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Determining the Kerr constant in optically isotropic liquid crystals. Physical Review E, 2022, 106, .	0.8	2
2	Structural properties of additive binary hard-sphere mixtures. II. Asymptotic behavior and structural crossovers. Physical Review E, 2021, 104, 024128.	0.8	3
3	Application of cell models to the melting and sublimation lines of the Lennard-Jones and related potential systems. Physical Review E, 2021, 104, 044119.	0.8	7
4	Structural properties of additive binary hard-sphere mixtures. III. Direct correlation functions. Physical Review E, 2021, 104, 054142.	0.8	1
5	Another Look at Auxeticity of 2D Square Media. Physica Status Solidi (B): Basic Research, 2020, 257, 2000485.	0.7	9
6	Structural properties of additive binary hard-sphere mixtures. Physical Review E, 2020, 101, 012117.	0.8	7
7	A comprehensive study of the thermal conductivity of the hard sphere fluid and solid by molecular dynamics simulation. Physical Chemistry Chemical Physics, 2020, 22, 8834-8845.	1.3	14
8	Thermodynamic and dynamical properties of the hard sphere system revisited by molecular dynamics simulation. Physical Chemistry Chemical Physics, 2019, 21, 6886-6899.	1.3	48
9	Thermodynamic curvature of soft-sphere fluids and solids. Physical Review E, 2018, 97, 022119.	0.8	9
10	Comprehensive representation of the Lennard-Jones equation of state based on molecular dynamics simulation data. Journal of Chemical Physics, 2018, 148, 114505.	1.2	22
11	Jerzy MaÅ,ecki. Phase Transitions, 2018, 91, 783-784.	0.6	O
12	Nonâ€Equilibrium Phase Behavior of Confined Molecular Films at Low Shear Rates. Physica Status Solidi (B): Basic Research, 2017, 254, 1600862.	0.7	1
13	Representation of the direct correlation function of the hard-sphere fluid. Physical Review E, 2017, 95, 062104.	0.8	10
14	Nanowire Stretching by Nonâ€Equilibrium Molecular Dynamics. Physica Status Solidi (B): Basic Research, 2017, 254, 1600861.	0.7	2
15	Improvement of the blue phase stability in chiral nematic liquid crystal mixtures. Phase Transitions, 2017, 90, 95-98.	0.6	2
16	A NosÃ $\hat{\mathbb{Q}}$ -Hoover Thermostat Adapted to a Slab Geometry. Computational Methods in Science and Technology, 2017, 23, .	0.3	1
17	Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study. Journal of Chemical Physics, 2016, 145, 164704.	1.2	23
18	Spatially dependent diffusion coefficient as a model for pH sensitive microgel particles in microchannels. Biomicrofluidics, 2016, 10, 054118.	1.2	7

#	Article	IF	CITATIONS
19	The second virial coefficient and critical point behavior of the Mie Potential. Journal of Chemical Physics, 2016, 145, 084505.	1.2	14
20	The Lennard-Jones melting line and isomorphism. Journal of Chemical Physics, 2015, 143, 234504.	1.2	23
21	Scaling of Lennard–Jones liquid elastic moduli, viscoelasticity and other properties along fluid–solid coexistence. Physica Status Solidi (B): Basic Research, 2015, 252, 1514-1525.	0.7	26
22	Second virial coefficient of rod-shaped molecules and molecular dynamics simulations of the isotropic phase. Physical Review E, 2015, 91, 042134.	0.8	5
23	Galilean-invariant Nosé-Hoover-type thermostats. Physical Review E, 2015, 91, 033312.	0.8	7
24	Boundary-controlled barostats for slab geometries in molecular dynamics simulations. Physical Review E, 2014, 90, 043302.	0.8	21
25	Thermodynamic properties and entropy scaling law for diffusivity in soft spheres. Physical Review E, 2014, 90, 012106.	0.8	26
26	Cubic materials in different auxetic regions: Linking microscopic to macroscopic formulations. Physica Status Solidi (B): Basic Research, 2012, 249, 1373-1378.	0.7	34
27	Pair correlation function of soft-sphere fluids. Journal of Chemical Physics, 2011, 134, 064115.	1.2	15
28	Auxeticity of cubic materials under pressure. Physica Status Solidi (B): Basic Research, 2011, 248, 96-104.	0.7	67
29	Pair force distributions in simple fluids. Journal of Chemical Physics, 2011, 135, 164507.	1.2	6
30	Auxeticity of cubic materials. Physica Status Solidi (B): Basic Research, 2009, 246, 2063-2071.	0.7	98
31	Soft-sphere soft glasses. Journal of Chemical Physics, 2009, 131, 204506.	1.2	18
32	Interactions between microgel particles. Soft Matter, 2009, 5, 2681.	1.2	110
33	Percolation threshold of hard-sphere fluids in between the soft-core and hard-core limits. Molecular Physics, 2006, 104, 3137-3146.	0.8	29
34	Thermodynamic properties of inverse power fluids. Physical Review E, 2006, 74, 031202.	0.8	24
35	The effects of particle softness on the dynamics of molecular and colloidal systems. Molecular Physics, 2005, 103, 2359-2373.	0.8	6
36	Mechanical, rheological and transport properties of soft particle fluids. Molecular Simulation, 2005, 31, 945-959.	0.9	10

#	Article	IF	CITATIONS
37	The influence of potential softness on the transport coefficients of simple fluids. Journal of Chemical Physics, 2005, 122, 234504.	1.2	36
38	Static properties and time correlation functions of fluids with steeply repulsive potentials. Molecular Physics, 2004, 102, 2057-2070.	0.8	20
39	Time correlation functions of hard sphere and soft sphere fluids. Physical Review E, 2004, 69, 021202.	0.8	31
40	Equation of state of inverse power fluids. Molecular Physics, 2004, 102, 2049-2056.	0.8	6
41	ELASTIC PROPERTIES OF INVERSE POWER FLUIDS. Computational Methods in Science and Technology, 2004, 10, 127-136.	0.3	3
42	Elastic properties of two-dimensional hard disks in the close-packing limit. Journal of Chemical Physics, 2003, 119, 939-946.	1.2	23
43	More efficient Brownian dynamics algorithms. Molecular Physics, 2000, 98, 1949-1960.	0.8	19
44	Algorithms for Brownian dynamics computer simulations: Multivariable case. Physical Review E, 1999, 60, 2381-2387.	0.8	50
45	Calculation of nanocolloidal liquid time scales by molecular dynamics simulations. Molecular Physics, 1999, 96, 1757-1766.	0.8	9
46	Molecular and Brownian Dynamics Simulations of Self-Diffusion in Inverse Power Fluids. Physics and Chemistry of Liquids, 1994, 28, 95-115.	0.4	5