
Robert D Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2192097/publications.pdf Version: 2024-02-01

ROBERT D HILL

#	Article	IF	CITATIONS
1	Waterlogging Stress Physiology in Barley. Agronomy, 2022, 12, 780.	1.3	16
2	Phytoglobin Expression Alters the Na+/K+ Balance and Antioxidant Responses in Soybean Plants Exposed to Na2SO4. International Journal of Molecular Sciences, 2022, 23, 4072.	1.8	4
3	Anaerobiosis modulation of two phytoglobins in barley (Hordeum vulgare L.), and their regulation by gibberellin and abscisic acid in aleurone cells. Plant Physiology and Biochemistry, 2022, 182, 174-181.	2.8	5
4	Tolerance to excess moisture in soybean is enhanced by over-expression of the Glycine max Phytoglobin (GmPgb1). Plant Physiology and Biochemistry, 2021, 159, 322-334.	2.8	13
5	Cold stress in maize (Zea mays) is alleviated by the over-expression of Phytoglobin 1 (ZmPgb1.1). Plant Physiology and Biochemistry, 2021, 167, 901-910.	2.8	7
6	Suppression of the soybean (Glycine max) Phytoglobin GmPgb1 improves tolerance to iron stress. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	4
7	The soybean Phytoglobin1 (GmPgb1) is involved in water deficit responses through changes in ABA metabolism. Journal of Plant Physiology, 2021, 267, 153538.	1.6	2
8	Over-expression of the Zea mays phytoglobin (ZmPgb1.1) alleviates the effect of water stress through shoot-specific mechanisms. Plant Physiology and Biochemistry, 2020, 155, 384-395.	2.8	4
9	Stem cell fate in hypoxic root apical meristems is influenced by phytoglobin expression. Journal of Experimental Botany, 2019, 71, 1350-1362.	2.4	12
10	In vitro differentiation of tracheary elements is induced by suppression of Arabidopsis phytoglobins. Plant Physiology and Biochemistry, 2019, 135, 141-148.	2.8	3
11	Spatio-temporal expression of phytoglobin: a determining factor in the NO specification of cell fate. Journal of Experimental Botany, 2019, 70, 4365-4377.	2.4	15
12	Spatial identification of transcripts and biological processes in laser micro-dissected sub-regions of waterlogged corn roots with altered expression of phytoglobin. Plant Physiology and Biochemistry, 2019, 139, 350-365.	2.8	6
13	Phytoglobins regulate nitric oxide-dependent abscisic acid synthesis and ethylene-induced program cell death in developing maize somatic embryos. Planta, 2018, 247, 1277-1291.	1.6	11
14	Protection of root apex meristem during stress responses. Plant Signaling and Behavior, 2018, 13, e1428517.	1.2	3
15	Redirecting Cell Fate During in vitro Embryogenesis: Phytoglobins as Molecular Switches. Frontiers in Plant Science, 2018, 9, 1477.	1.7	11
16	Are avoidance and acclimation responses during hypoxic stress modulated by distinct cell-specific mechanisms?. Plant Signaling and Behavior, 2017, 12, e1273304.	1.2	9
17	Hedonic indexes for public and private housing in Costa Rica. International Journal of Housing Markets and Analysis, 2017, 10, 140-155.	0.7	2
18	Determining Cellular Responses: Phytoglobins May Direct the Traffic. Trends in Plant Science, 2017, 22, 820-822.	4.3	8

ROBERT D HILL

#	Article	IF	CITATIONS
19	Expression of Arabidopsis class 1 phytoglobin (AtPgb1) delays death and degradation of the root apical meristem during severe PEC-induced water deficit. Journal of Experimental Botany, 2017, 68, 5653-5668.	2.4	32
20	Cellular localization of the Arabidopsis class 2 phytoglobin influences somatic embryogenesis. Journal of Experimental Botany, 2017, 68, 1013-1023.	2.4	23
21	Regulation of programmed cell death by phytoglobins. Journal of Experimental Botany, 2016, 67, 5901-5908.	2.4	26
22	Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin. Journal of Experimental Botany, 2016, 67, 2231-2246.	2.4	43
23	Phytoglobins Improve Hypoxic Root Growth by Alleviating Apical Meristem Cell Death. Plant Physiology, 2016, 172, 2044-2056.	2.3	62
24	Phytoglobin expression influences soil flooding response of corn plants. Annals of Botany, 2016, 118, 919-931.	1.4	28
25	Phytoglobin: a novel nomenclature for plant globins accepted by the globin community at the 2014 XVIII conference on Oxygen-Binding and Sensing Proteins. F1000Research, 2016, 5, 212.	0.8	49
26	Hemoglobin Control of Cell Survival/Death Decision Regulates in Vitro Plant Embryogenesis Â. Plant Physiology, 2014, 165, 810-825.	2.3	54
27	Function of type–2 <scp>A</scp> rabidopsis hemoglobin in the auxinâ€mediated formation of embryogenic cells during morphogenesis. Plant Journal, 2013, 74, 946-958.	2.8	60
28	Non-symbiotic haemoglobins—What's happening beyond nitric oxide scavenging?. AoB PLANTS, 2012, 2012, pls004.	1.2	130
29	Bioimaging Techniques for Subcellular Localization of Plant Hemoglobins and Measurement of Hemoglobinâ€Dependent Nitric Oxide Scavenging In Planta. Methods in Enzymology, 2008, 437, 595-604.	0.4	18
30	Metabolic effects of hemoglobin gene expression in plants. Gene, 2007, 398, 86-93.	1.0	84
31	Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta, 2007, 226, 465-474.	1.6	207
32	Cytosolic calcium is involved in the regulation of barley hemoglobin gene expression. Planta, 2006, 223, 542-549.	1.6	34
33	Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta, 2006, 223, 1033-1040.	1.6	132
34	Hemoglobin expression affects ethylene production in maize cell cultures. Plant Physiology and Biochemistry, 2005, 43, 485-489.	2.8	38
35	Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. Journal of Experimental Botany, 2004, 55, 2473-2482.	2.4	260
36	NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta, 2004, 219, 95-102.	1.6	149

ROBERT D HILL

#	Article	IF	CITATIONS
37	Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant Journal, 2003, 35, 763-770.	2.8	272
38	Plant Haemoglobins, Nitric Oxide and Hypoxic Stress. Annals of Botany, 2003, 91, 173-178.	1.4	203
39	Haemoglobin expression in germinating barley. Seed Science Research, 1998, 8, 431-436.	0.8	43
40	Expression, Purification, and Properties of Recombinant Barley (Hordeum sp.) Hemoglobin. Journal of Biological Chemistry, 1997, 272, 16746-16752.	1.6	151
41	A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Molecular Biology, 1994, 24, 853-862.	2.0	199