Jayeeta Bhaumik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2191565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignin-Based CdS Dots as Multifunctional Platforms for Sensing and Wearable Photodynamic Coatings. ACS Applied Nano Materials, 2022, 5, 2748-2761.	5.0	12
2	Development of a light activatable lignin nanosphere based spray coating for bioimaging and antimicrobial photodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 1592-1603.	5.8	27
3	Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102368.	3.3	24
4	Insights on the polypyrrole based nanoformulations for photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2021, 25, 605-622.	0.8	4
5	Light-assisted anticancer photodynamic therapy using porphyrin-doped nanoencapsulates. Journal of Photochemistry and Photobiology B: Biology, 2021, 220, 112209.	3.8	17
6	Sustainable Lignin-Based Coatings Doped with Titanium Dioxide Nanocomposites Exhibit Synergistic Microbicidal and UV-Blocking Performance toward Personal Protective Equipment. ACS Sustainable Chemistry and Engineering, 2021, 9, 11223-11237.	6.7	36
7	Lignin-based metal oxide nanocomposites for UV protection applications: A review. Journal of Cleaner Production, 2021, 317, 128300.	9.3	30
8	Development of agri-biomass based lignin derived zinc oxide nanocomposites as promising UV protectant-cum-antimicrobial agents. Journal of Materials Chemistry B, 2020, 8, 260-269.	5.8	67
9	Harnessing the Photocatalytic Potential of Polypyrroles in Water through Nanointervension: Synthesis and Photophysical Evaluation of Biodegradable Polypyrrolic Nanoencapsulates. ChemNanoMat, 2020, 6, 239-247.	2.8	13
10	Lignin-Derived Hybrid Materials as Promising Adsorbents for the Separation of Pollutants. ACS Symposium Series, 2020, , 225-261.	0.5	7
11	Lignin–Bimetallic Nanoconjugate Doped pH-Responsive Hydrogels for Laser-Assisted Antimicrobial Photodynamic Therapy. Biomacromolecules, 2020, 21, 3216-3230.	5.4	61
12	Synthesis and Applications of Lignin-Derived Hydrogels. Springer Series on Polymer and Composite Materials, 2020, , 231-252.	0.7	6
13	Engineering Lignin Stabilized Bimetallic Nanocomplexes: Structure, Mechanistic Elucidation, Antioxidant, and Antimicrobial Potential. ACS Biomaterials Science and Engineering, 2019, 5, 3212-3227.	5.2	48
14	Promiscuity of Lipase atalyzed Reactions for Organic Synthesis: A Recent Update. ChemistrySelect, 2018, 3, 2441-2466.	1.5	71
15	Development of Gelatin Nanoparticle-Based Biodegradable Phototheranostic Agents: Advanced System to Treat Infectious Diseases. ACS Biomaterials Science and Engineering, 2018, 4, 473-482.	5.2	31
16	Development of nanobiocatalysts through the immobilization of Pseudomonas fluorescens lipase for applications in efficient kinetic resolution of racemic compounds. Bioresource Technology, 2017, 239, 464-471.	9.6	51
17	Development of Gold-Based Phototheranostic Nanoagents through a Bioinspired Route and Their Applications in Photodynamic Therapy. ACS Sustainable Chemistry and Engineering, 2017, 5, 7950-7960.	6.7	61
18	Chemoenzymatic Route for the Synthesis of (<i>S</i>)â€Moprolol, a Potential βâ€Blocker. Chirality, 2016, 28, 313-318.	2.6	9

Јачеета Внаимік

#	Article	IF	CITATIONS
19	In silico approach towards lipase mediated chemoenzymatic synthesis of (S)-ranolazine, as an anti-anginal drug. RSC Advances, 2016, 6, 49150-49157.	3.6	5
20	Synthesis of Enantiopure Drugs and Drug Intermediates Using <i>In Silico</i> Generated Archetype Biocatalyst: A Case Study Using Alprenolol as a Model Drug. ChemistrySelect, 2016, 1, 871-876.	1.5	5
21	Theranostic Nanoconjugates of Tetrapyrrolic Macrocycles and Their Applications in Photodynamic Therapy. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 509-524.	0.4	3
22	Bioinspired nanophotosensitizers: synthesis and characterization of porphyrin–noble metal nanoparticle conjugates. New Journal of Chemistry, 2016, 40, 724-731.	2.8	25
23	Biocatalytic Approach for the Synthesis of Enantiopure Acebutolol as a <i>β₁</i> â€Selective Blocker. Chirality, 2015, 27, 382-391.	2.6	12
24	Bioinspired Nanotheranostic Agents: Synthesis, Surface Functionalization, and Antioxidant Potential. ACS Biomaterials Science and Engineering, 2015, 1, 382-392.	5.2	76
25	Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1350-1355.	7.1	109
26	Lipase-catalyzed green synthesis of enantiopure atenolol. RSC Advances, 2015, 5, 15850-15860.	3.6	38
27	Applications of phototheranostic nanoagents in photodynamic therapy. Nano Research, 2015, 8, 1373-1394.	10.4	94
28	Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. Journal of Colloid and Interface Science, 2014, 415, 39-47.	9.4	272
29	Regioselective β-pyrrolic electrophilic substitution of hydrodipyrrin–dialkylboron complexes facilitates access to synthetic models for chlorophyll f. New Journal of Chemistry, 2014, 38, 1717.	2.8	25
30	Targeted nanoagents for the detection of cancers. Molecular Oncology, 2010, 4, 511-528.	4.6	70
31	Synthesis and Photophysical Properties of Sulfonamidophenyl Porphyrins as Models for Activatable Photosensitizers. Journal of Organic Chemistry, 2009, 74, 5894-5901.	3.2	37
32	Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: Role of molecular charge, central metal and hydroxyl radical production. Cancer Letters, 2009, 282, 63-76.	7.2	114
33	High-yielding syntheses of hydrophilic conjugatable chlorins and bacteriochlorins. Organic and Biomolecular Chemistry, 2009, 7, 3430.	2.8	37
34	Photophysical characterization of imidazolium-substituted Pd(II), In(III), and Zn(II) porphyrins as photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 346-355.	3.9	91
35	Rational Routes to Formyl-Substituted Chlorins. Journal of Organic Chemistry, 2007, 72, 5839-5842.	3.2	27
36	Masked Imidazolylâ ´'Dipyrromethanes in the Synthesis of Imidazole-Substituted Porphyrins. Journal of Organic Chemistry, 2006, 71, 8807-8817.	3.2	50