Lu-Lu Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/219131/publications.pdf

Version: 2024-02-01

186265 182427 2,708 61 28 51 h-index citations g-index papers 64 64 64 3584 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Graphene-embedded oblique V-shaped silver nanoarrays for hydrophobic pollutants pre-concentration and high-sensitivity SERS detection. Journal of Hazardous Materials, 2022, 426, 128085.	12.4	10
2	Fluorescence and surface-enhanced Raman scattering dual-mode nanoprobe for monitoring telomerase activity in living cells. Microchemical Journal, 2022, 175, 107171.	4. 5	11
3	Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues. Food Chemistry, 2022, 381, 132208.	8.2	47
4	Reusable ring-like Fe3O4/Au nanozymes with enhanced peroxidase-like activities for colorimetric-SERS dual-mode sensing of biomolecules in human blood. Biosensors and Bioelectronics, 2022, 209, 114253.	10.1	58
5	Esterified-sawdust decorated with AgNPs as solid-phase extraction membranes for enrichment and high-sensitivity detection of polychlorinated biphenyls. Chemosphere, 2022, 298, 134266.	8.2	3
6	Rapid and non-invasive surface-enhanced Raman spectroscopy (SERS) detection of chlorpyrifos in fruits using disposable paper-based substrates charged with gold nanoparticle/halloysite nanotube composites. Mikrochimica Acta, 2022, 189, 197.	5.0	7
7	Rapid detection of trace formaldehyde in food based on surface-enhanced Raman scattering coupled with assembled purge trap. Food Chemistry, 2021, 340, 127930.	8.2	28
8	Recent advances in graphene nanoribbons for biosensing and biomedicine. Journal of Materials Chemistry B, 2021, 9, 6129-6143.	5.8	19
9	Oligomerized imide and thioimide organic cathode materials <i>via</i> high capacity lithium ion batteries. Journal of Materials Chemistry A, 2021, 9, 18306-18312.	10.3	4
10	In situ food-borne pathogen sensors in a nanoconfined space by surface enhanced Raman scattering. Mikrochimica Acta, 2021, 188, 201.	5.0	10
11	Sensitive label-free detection of bilirubin in blood using boron nitride-modified nanorod arrays as SERS substrates. Sensors and Actuators B: Chemical, 2021, 334, 129634.	7.8	17
12	Combined Paper Centrifugal Chromatographic Separation and SERS Detection for Multicomponent Substances. Analytical Chemistry, 2021, 93, 8693-8697.	6.5	11
13	Highly efficient removal of organic pollutants from wastewater using a recyclable graphene oxide membrane intercalated with g-C3N4@TiO2-nanowires. Journal of Molecular Liquids, 2021, 337, 116461.	4.9	11
14	Ultrasensitive SERS detection of exhaled biomarkers of lung cancer using a multifunctional solid phase extraction membrane. Nanoscale, 2021, 13, 13344-13352.	5.6	31
15	Sensitive detection of telomerase activity in cells using a DNA-based fluorescence resonance energy transfer nanoprobe. Analytica Chimica Acta, 2020, 1098, 133-139.	5.4	16
16	A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection. Talanta, 2020, 220, 121340.	5 . 5	11
17	Two-dimensional MXene modified AgNRs as a surface-enhanced Raman scattering substrate for sensitive determination of polychlorinated biphenyls. Analyst, The, 2020, 145, 7421-7428.	3.5	25
18	Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish. Mikrochimica Acta, 2020, 187, 310.	5.0	58

#	Article	IF	Citations
19	Extraction of Two-Dimensional Aluminum Alloys from Decagonal Quasicrystals. ACS Nano, 2020, 14, 7435-7443.	14.6	19
20	A Sm-MOF/GO nanocomposite membrane for efficient organic dye removal from wastewater. RSC Advances, 2020, 10, 8540-8547.	3.6	53
21	Facile fabrication of three-dimensional AuNPs@AgNR arrays for highly sensitive SERS detection of 2,3,7,8-TCDD. Journal of Materials Science, 2020, 55, 7029-7038.	3.7	9
22	Label-free discrimination of glioma brain tumors in different stages by surface enhanced Raman scattering. Talanta, 2020, 216, 120983.	5 . 5	21
23	Convenient synthesis of TiO2 nanowires with anatase phase for high photocatalytic activity. Materials Express, 2020, 10, 537-542.	0.5	5
24	Recyclable three-dimensional Ag nanorod arrays decorated with O-g-C3N4 for highly sensitive SERS sensing of organic pollutants. Journal of Hazardous Materials, 2019, 379, 120823.	12.4	47
25	A Novel Nanocomposite Membrane Combining BN Nanosheets and GO for Effective Removal of Antibiotic in Water. Nanomaterials, 2019, 9, 386.	4.1	20
26	Fluorescence-SERS dual-signal probes for pH sensing in live cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 289-295.	4.7	13
27	Highly reproducible and sensitive silver nanorod array for the rapid detection of Allura Red in candy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 195, 165-171.	3.9	27
28	Facile fabrication of ternary TiO2-gold nanoparticle-graphene oxide nanocomposites for recyclable surface enhanced Raman scattering. Talanta, 2018, 186, 265-271.	5.5	21
29	Construction of a paper-based electrochemical biosensing platform for rapid and accurate detection of adenosine triphosphate (ATP). Sensors and Actuators B: Chemical, 2018, 256, 931-937.	7.8	38
30	Highly Sensitive Silver Nanorod Arrays for Rapid Surface Enhanced Raman Scattering Detection of Acetamiprid Pesticides. Chinese Journal of Chemical Physics, 2018, 31, 152-158.	1.3	12
31	Recyclable Visible Light-Driven O-g-C ₃ N ₄ /Graphene Oxide/N-Carbon Nanotube Membrane for Efficient Removal of Organic Pollutants. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42427-42435.	8.0	65
32	Joint sparse representation and denoising method for Raman spectrum. Journal of Raman Spectroscopy, 2018, 49, 1972-1977.	2.5	8
33	Thin layer chromatography combined with surface-enhanced raman spectroscopy for rapid sensing aflatoxins. Journal of Chromatography A, 2018, 1579, 115-120.	3.7	72
34	Highly reproducible solid-phase extraction membrane for removal and surface-enhanced Raman scattering detection of antibiotics. Journal of Materials Science, 2018, 53, 14989-14997.	3.7	18
35	Removal of Antibiotics From Water with an All-Carbon 3D Nanofiltration Membrane. Nanoscale Research Letters, 2018, 13, 146.	5.7	29
36	Surface-enhanced Raman scattering nanoprobes for the simultaneous detection of endogenous hypochlorous acid and peroxynitrite in living cells. Sensors and Actuators B: Chemical, 2018, 277, 8-13.	7.8	12

#	Article	IF	Citations
37	Rapid and sensitive detection of sodium saccharin in soft drinks by silver nanorod array SERS substrates. Sensors and Actuators B: Chemical, 2017, 251, 272-279.	7.8	78
38	On-demand fabrication of surface-enhanced Raman scattering arrays by pen writing, and their application to the determination of melamine in milk. Mikrochimica Acta, 2017, 184, 2909-2917.	5.0	34
39	Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection. Electrochemistry Communications, 2017, 81, 74-78.	4.7	106
40	Novel titanium dioxide–graphene–activated carbon ternary nanocomposites with enhanced photocatalytic performance in rhodamine B and tetracycline hydrochloride degradation. Journal of Materials Science, 2017, 52, 8311-8320.	3.7	36
41	Gold Nanoparticles and g ₃ N ₄ â€Intercalated Graphene Oxide Membrane for Recyclable Surface Enhanced Raman Scattering. Advanced Functional Materials, 2017, 27, 1701714.	14.9	129
42	Fluorescence-surface enhanced Raman scattering dual-mode nanosensors to monitor hydroxyl radicals in living cells. Sensors and Actuators B: Chemical, 2017, 251, 934-941.	7.8	20
43	Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Mikrochimica Acta, 2016, 183, 1307-1313.	5.0	61
44	SERS nanoprobes for the monitoring of endogenous nitric oxide in living cells. Biosensors and Bioelectronics, 2016, 85, 324-330.	10.1	56
45	Blood fluorescence polarization characteristics of saturated fatty acid biological effects. Optik, 2016, 127, 11877-11883.	2.9	1
46	Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28180-28186.	8.0	85
47	A single-bead telomere sensor based on fluorescence resonance energy transfer. Analyst, The, 2016, 141, 3033-3040.	3.5	2
48	Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells. Biosensors and Bioelectronics, 2016, 77, 292-298.	10.1	76
49	Monitoring of Endogenous Hydrogen Sulfide in Living Cells Using Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2015, 54, 12758-12761.	13.8	122
50	Thioanisole induced size-selective fragmentation of gold nanoparticles. RSC Advances, 2014, 4, 14031-14034.	3.6	3
51	SERS sensing of sulfide based on the sulfidation of silver nanoparticles. Analytical Methods, 2013, 5, 6579.	2.7	19
52	Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Analytica Chimica Acta, 2013, 792, 86-92.	5.4	58
53	Selective and Sensitive Detection of Intracellular O ₂ ^{•–} Using Au NPs/Cytochrome <i>c</i> as SERS Nanosensors. Analytical Chemistry, 2013, 85, 9549-9555.	6.5	71
54	Humic acids-based one-step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons. Analyst, The, 2013, 138, 1523.	3.5	58

#	Article	IF	CITATIONS
55	Surface-imprinted core–shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Analytica Chimica Acta, 2013, 777, 57-62.	5.4	126
56	Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag–graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2013, 43, 94-100.	10.1	152
57	Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy. Nanoscale, 2012, 4, 137-142.	5.6	87
58	Batch fabrication of disposable screen printed SERS arrays. Lab on A Chip, 2012, 12, 876-881.	6.0	188
59	Cu@Ag/ \hat{I}^2 -AgVO3 as a SERS substrate for the trace level detection of carbamate pesticides. Analytical Methods, 2012, 4, 3785.	2.7	24
60	An OFF–ON fluorescent probe for Zn2+ based on a GFP-inspired imidazolone derivative attached to a 1,10-phenanthroline moiety. Chemical Communications, 2011, 47, 4361.	4.1	75
61	Facile On-Site Detection of Substituted Aromatic Pollutants in Water Using Thin Layer Chromatography Combined with Surface-Enhanced Raman Spectroscopy. Environmental Science & Technology, 2011, 45, 4046-4052.	10.0	155