
Panagiota Angeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2191252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of surfactant mass transfer with drop formation times from dynamic interfacial tension measurements in microchannels. Journal of Colloid and Interface Science, 2022, 605, 204-213.	5.0	21
2	Intensified liquid-liquid extraction of biomolecules using ionic liquids in small channels. Separation and Purification Technology, 2022, 282, 120063.	3.9	14
3	Intensified solvent extraction of L-tryptophan in small channels using D2EHPA. Chemical Engineering and Processing: Process Intensification, 2022, 172, 108802.	1.8	0
4	Effect of surfactants on drop formation flow patterns in a flow-focusing microchannel. Chemical Engineering Science, 2022, 253, 117517.	1.9	8
5	Application of ultrasound techniques in Solid-Liquid fluidized bed. Measurement: Journal of the International Measurement Confederation, 2022, 194, 111017.	2.5	5
6	A mechanistic model for the prediction of flow pattern transitions during separation of liquid-liquid pipe flows. International Journal of Multiphase Flow, 2022, 155, 104172.	1.6	3
7	Viscoelastic effects of immiscible liquid–liquid displacement in microchannels with bends. Physics of Fluids, 2022, 34, .	1.6	4
8	Roles of solid effective stress and fluid-particle interaction force in modeling shear-induced particle migration in non-Brownian suspensions. Physical Review Fluids, 2021, 6, .	1.0	0
9	Viscoelastic flow instabilities in static mixers: Onset and effect on the mixing efficiency. Physics of Fluids, 2021, 33, .	1.6	9
10	Effect of D-Mannitol on the Microstructure and Rheology of Non-Aqueous Carbopol Microgels. Materials, 2021, 14, 1782.	1.3	1
11	Experimental and CFD scale-up studies for intensified actinide/lanthanide separations. Chemical Engineering and Processing: Process Intensification, 2021, 164, 108355.	1.8	5
12	Design optimization of microfluidic-based solvent extraction systems for radionuclides detection. Nuclear Engineering and Design, 2021, 383, 111432.	0.8	2
13	Application of acoustic techniques to fluid-particle systems – A review. Chemical Engineering Research and Design, 2021, 176, 180-193.	2.7	13
14	Investigation of the swollen state of Carbopol molecules in non-aqueous solvents through rheological characterization. Soft Matter, 2020, 16, 9799-9815.	1.2	11
15	Scale-Up Studies for Co/Ni Separations in Intensified Reactors. Micromachines, 2020, 11, 1106.	1.4	1
16	Mathematical Modeling for the Design and Scale-Up of a Large Industrial Aerosol-Assisted Chemical Vapor Deposition Process under Uncertainty. Industrial & Engineering Chemistry Research, 2020, 59, 1249-1260.	1.8	16
17	Surfing of drops on moving liquidâ ϵ "liquid interfaces. Journal of Fluid Mechanics, 2020, 892, .	1.4	7
18	Hydrodynamics and mass transfer in segmented flow small channel contactors for uranium extraction. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107921.	1.8	14

#	Article	IF	CITATIONS
19	Experimental investigation of the solid-liquid separation in a stirred tank owing to viscoelasticity. Physical Review Fluids, 2020, 5, .	1.0	4
20	Process intensification applied to spent nuclear fuel reprocessing: An alternative flowsheet using small channels. Chemical Engineering and Processing: Process Intensification, 2019, 143, 107618.	1.8	3
21	Experimental and numerical studies on the flow characteristics and separation properties of dispersed liquid-liquid flows. Physics of Fluids, 2019, 31, .	1.6	12
22	Gelation kinetics of non-aqueous Carbopol dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 84-95.	2.3	8
23	Vortex-induced interfacial waves in liquid–liquid flows across cylindrical bluff bodies of various sizes. European Journal of Mechanics, B/Fluids, 2019, 76, 340-351.	1.2	2
24	Studies on mass transfer of europium(III) in micro-channels using a micro Laser Induced Fluorescence technique. Chemical Engineering Journal, 2019, 372, 1154-1163.	6.6	19
25	A modelling approach for the comparison between intensified extraction in small channels and conventional solvent extraction technologies. Chemical Engineering Science, 2019, 203, 201-211.	1.9	10
26	Intensified Liquid-Liquid Extraction Technologies in Small Channels: A Review. Johnson Matthey Technology Review, 2019, 63, 299-310.	0.5	16
27	On the closure problem of the effective stress in the Eulerian-Eulerian and mixture modeling approaches for the simulation of liquid-particle suspensions. Physics of Fluids, 2019, 31, .	1.6	11
28	Laser induced fluorescence studies on the distribution of surfactants during drop/interface coalescence. Physics of Fluids, 2019, 31, .	1.6	21
29	Separated oil-water flows with drag reducing polymers. Experimental Thermal and Fluid Science, 2019, 102, 467-478.	1.5	16
30	Experimental studies on droplet formation in a flow-focusing microchannel in the presence of surfactants. Chemical Engineering Science, 2019, 195, 507-518.	1.9	42
31	Modelling of Microfluidic Devices for Analysis of Radionuclides. Computer Aided Chemical Engineering, 2019, 46, 1807-1812.	0.3	2
32	Mathematical modelling of intensified extraction for spent nuclear fuel reprocessing. Nuclear Engineering and Design, 2018, 332, 162-172.	0.8	8
33	Intensified extraction of uranium(VI) in impinging-jets contactors. Chemical Engineering Journal, 2018, 342, 251-259.	6.6	19
34	Computational fluid dynamic studies of mixers for highly viscous shear thinning fluids and PIV validation. Chemical Engineering Science, 2018, 179, 133-149.	1.9	20
35	Effect of surfactant on emulsification in microchannels. Chemical Engineering Science, 2018, 176, 139-152.	1.9	63
36	Modelling under Uncertainty for Process Design and Scale-up of an Industrial AACVD. Computer Aided Chemical Engineering, 2018, , 253-258.	0.3	3

#	Article	IF	CITATIONS
37	Hydrodynamics studies of the behaviour of traditional and two-phase ionic liquid solvent systems in countercurrent chromatography (CCC). Chemical Engineering Science, 2018, 192, 551-564.	1.9	4
38	Optimal design of a COEX process for spent nuclear fuel reprocessing using small channels. Computer Aided Chemical Engineering, 2018, 44, 2365-2370.	0.3	1
39	Predictive model for the scale-out of small channel two-phase flow contactors. Chemical Engineering Journal, 2018, 351, 589-602.	6.6	18
40	On the effect of surfactants on drop coalescence at liquid/liquid interfaces. Chemical Engineering Science, 2017, 161, 215-227.	1.9	35
41	Flow pattern transition in liquid-liquid flows with a transverse cylinder. International Journal of Multiphase Flow, 2017, 90, 1-12.	1.6	15
42	Experimental and CFD studies of power consumption in the agitation of highly viscous shear thinning fluids. Chemical Engineering Research and Design, 2017, 119, 171-182.	2.7	42
43	Experimental investigations of nonâ€Newtonian/Newtonian liquidâ€liquid flows in microchannels. AICHE Journal, 2017, 63, 3599-3609.	1.8	37
44	The nonlinear analysis of horizontal oil-water two-phase flow in a small diameter pipe. International Journal of Multiphase Flow, 2017, 92, 39-49.	1.6	21
45	Liquid-liquid dispersions in intensified impinging-jets cells. Chemical Engineering Science, 2017, 171, 149-159.	1.9	22
46	Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels. Chemical Engineering Journal, 2017, 328, 717-736.	6.6	58
47	In memory of Professor Barry Azzopardi. International Journal of Multiphase Flow, 2017, 97, A1-A2.	1.6	Ο
48	An experimental study on the drop/interface partial coalescence with surfactants. Physics of Fluids, 2017, 29, .	1.6	26
49	Optical measurements in evolving dispersed pipe flows. Experiments in Fluids, 2017, 58, 1.	1.1	27
50	Mathematical Modelling of Intensified Extraction for Spent Nuclear Fuel Reprocessing. Computer Aided Chemical Engineering, 2017, , 355-360.	0.3	1
51	Multiphase Flow and Transfer Phenomenon. International Journal of Chemical Engineering, 2017, 2017, 1-2.	1.4	0
52	Probability Density Functions for Droplet Sizing in Aerosol Transport Modelling. Computer Aided Chemical Engineering, 2017, , 2245-2250.	0.3	3
53	Extraction of {UO2}2+ in Intensified Separators of Different Sizes Using Ionic Liquids. , 2016, , .		0
54	Effect of channel size on liquidâ€liquid plug flow in small channels. AICHE Journal, 2016, 62, 315-324.	1.8	71

Panagiota Angeli

#	Article	IF	CITATIONS
55	Transition from stratified to non-stratified oil–water flows using a bluff body. Experimental Thermal and Fluid Science, 2016, 76, 175-184.	1.5	13
56	Surfactant effects on the coalescence of a drop in a Hele-Shaw cell. Physical Review E, 2016, 94, 033101.	0.8	20
57	A PIV investigation of the effect of disperse phase fraction on the turbulence characteristics of liquid–liquid mixing in a stirred tank. Chemical Engineering Science, 2016, 152, 528-546.	1.9	34
58	Intensified Eu(III) extraction using ionic liquids in small channels. Chemical Engineering Science, 2016, 143, 276-286.	1.9	64
59	Effect of drag reducing polymer on horizontal liquid–liquid flows. Experimental Thermal and Fluid Science, 2015, 64, 164-174.	1.5	37
60	Investigations of interfacial waves at the inlet section in stratified oil–water flows. Experimental Thermal and Fluid Science, 2015, 60, 115-122.	1.5	5
61	Studies of plug formation in microchannel liquid–liquid flows using advanced particle image velocimetry techniques. Experimental Thermal and Fluid Science, 2015, 69, 99-110.	1.5	21
62	Review and perspectives of AFM application on the study of deformable drop/bubble interactions. Advances in Colloid and Interface Science, 2015, 225, 88-97.	7.0	19
63	Effect of channel size on mass transfer during liquid–liquid plug flow in small scale extractors. Chemical Engineering Journal, 2015, 262, 785-793.	6.6	151
64	A Semi-Empirical Model for Predicting the Onset of Drop Formation in Stratified Horizontal Oil-Water Flow. Chemical Engineering Communications, 2015, 202, 415-419.	1.5	2
65	Pressure drop and holdup predictions in horizontal oil–water flows for curved and wavy interfaces. Chemical Engineering Research and Design, 2015, 93, 55-65.	2.7	48
66	å^†æ•£ä½"ç³»ä,液滴间力å¦è¡Œä,º. Chinese Science Bulletin, 2015, 60, 2272-2281.	0.4	0
67	{UO2}2+ Extraction Using Ionic Liquids in Intensified Extractors. , 2014, , .		2
68	Effect of dispersed holdup on drop size distribution in oil–water dispersions: Experimental observations and population balance modeling. Chemical Engineering Science, 2014, 105, 22-31.	1.9	33
69	Spectral density analysis of the interface in stratified oil–water flows. International Journal of Multiphase Flow, 2014, 65, 117-126.	1.6	10
70	In situ diagnostic techniques for characterisation of polymer electrolyte membrane water electrolysers – Flow visualisation and electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 2014, 39, 4468-4482.	3.8	136
71	Extraction of dioxouranium(VI) in small channels using ionic liquids. Chemical Engineering Research and Design, 2013, 91, 681-687.	2.7	47
72	Dioxouranium(VI) extraction in microchannels using ionic liquids. Chemical Engineering Journal, 2013, 227, 151-157.	6.6	69

#	Article	IF	CITATIONS
73	Interfacial characteristics of stratified liquid–liquid flows using a conductance probe. Experiments in Fluids, 2013, 54, 1.	1.1	26
74	Flow patterns and pressure drop of ionic liquid–water two-phase flows in microchannels. International Journal of Multiphase Flow, 2013, 54, 1-10.	1.6	100
75	Silica Nanoparticles for Micro-Particle Imaging Velocimetry: Fluorosurfactant Improves Nanoparticle Stability and Brightness of Immobilized Iridium(III) Complexes. Langmuir, 2013, 29, 14701-14708.	1.6	18
76	Luminescent ruthenium(II) tris-bipyridyl complex caged in nanoscale silica for particle velocimetry studies in microchannels. Measurement Science and Technology, 2012, 23, 084004.	1.4	6
77	Mixing patterns in water plugs during water/ionic liquid segmented flow in microchannels. Chemical Engineering Science, 2012, 80, 334-341.	1.9	93
78	Experimental study on interfacial waves in stratified horizontal oil–water flow. International Journal of Multiphase Flow, 2011, 37, 930-940.	1.6	54
79	Investigation on heavy crude-water two phase flow and related flow characteristics. International Journal of Multiphase Flow, 2011, 37, 1156-1164.	1.6	64
80	Effect of glycerol addition on phase inversion in horizontal dispersed oil–water pipe flows. Experimental Thermal and Fluid Science, 2011, 35, 628-635.	1.5	12
81	Bubble growth rate from stainless steel substrate and needle nozzles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 240-247.	2.3	32
82	Effect of Inlet Conditions on Taylor Bubble Length in Microchannels. Heat Transfer Engineering, 2011, 32, 1117-1125.	1.2	57
83	Mass transfer during Taylor flow in microchannels with and without chemical reaction. Chemical Engineering Journal, 2010, 160, 873-881.	6.6	112
84	Bubble Formation on Top of Submerged Needle and Substrate Plates. , 2010, , .		0
85	Onset of entrainment and degree of dispersion in dual continuous horizontal oil–water flows. Experimental Thermal and Fluid Science, 2009, 33, 774-781.	1.5	5
86	Flow regimes for adiabatic gas–liquid flow in microchannels. Chemical Engineering Science, 2009, 64, 2749-2761.	1.9	229
87	Predictive model of the entrained fraction in horizontal oil–water flows. Chemical Engineering Science, 2009, 64, 2817-2825.	1.9	13
88	A methodology for predicting phase inversion during liquid–liquid dispersed pipeline flow. Chemical Engineering Research and Design, 2009, 87, 318-324.	2.7	33
89	Effect of glycerol on the binary coalescence of water drops in stagnant oil phase. Chemical Engineering Research and Design, 2009, 87, 1640-1648.	2.7	26
90	Observations on single drop formation from a capillary tube at low flow rates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 334, 197-202.	2.3	30

#	Article	IF	CITATIONS
91	Droplet size and velocity in dual continuous horizontal oil–water flows. Chemical Engineering Research and Design, 2008, 86, 83-93.	2.7	13
92	Design of a mesh microreactor for even flow distribution and narrow residence time distribution. Chemical Engineering Journal, 2008, 135, S259-S269.	6.6	21
93	CFD simulations of the effect of inlet conditions on Taylor flow formation. International Journal of Heat and Fluid Flow, 2008, 29, 1603-1611.	1.1	68
94	Hydrodynamics of Taylor flow in small channels: A Review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222, 737-751.	1.1	178
95	Axial mass transfer in Taylor flow through circular microchannels. AICHE Journal, 2007, 53, 1413-1428.	1.8	24
96	Mean and turbulent fluctuating velocities in oil–water vertical dispersed flows. Chemical Engineering Science, 2007, 62, 1199-1214.	1.9	23
97	Transition between stratified and non-stratified horizontal oil–water flows. Part I: Stability analysis. Chemical Engineering Science, 2007, 62, 2915-2928.	1.9	74
98	Transition between stratified and non-stratified horizontal oil–water flows. Part II: Mechanism of drop formation. Chemical Engineering Science, 2007, 62, 2929-2940.	1.9	40
99	Effect of drag-reducing polymers on horizontal oil–water flows. Journal of Petroleum Science and Engineering, 2007, 57, 334-346.	2.1	72
100	Population balance modelling of phase inversion in liquid–liquid pipeline flows. Chemical Engineering Science, 2006, 61, 4994-4997.	1.9	25
101	Upward and downward inclination oil–water flows. International Journal of Multiphase Flow, 2006, 32, 413-435.	1.6	82
102	On the formation of Taylor bubbles in small tubes. Chemical Engineering Science, 2006, 61, 6653-6666.	1.9	59
103	Evaluation of drop size distribution from chord length measurements. AICHE Journal, 2006, 52, 931-939.	1.8	39
104	Phase Inversion and Associated Phenomena in Oil-Water Vertical Pipeline Flow. Canadian Journal of Chemical Engineering, 2006, 84, 94-107.	0.9	26
105	Phase inversion in dispersed liquid–liquid flows. Experimental Thermal and Fluid Science, 2005, 29, 331-339.	1.5	87
106	Prediction of phase inversion in agitated vessels using a two-region model. Chemical Engineering Science, 2005, 60, 3487-3495.	1.9	31
107	Drop size distribution in highly concentrated liquid-liquid dispersions using a light back scattering method. Journal of Chemical Technology and Biotechnology, 2005, 80, 545-552.	1.6	60
108	Sample Pulse Broadening in Taylor Flow Microchannels for Screening Applications. Chemical Engineering and Technology, 2005, 28, 509-514.	0.9	21

Panagiota Angeli

#	Article	IF	CITATIONS
109	Gasâ~'Liquid and Gasâ~'Liquidâ~'Solid Microstructured Reactors:Â Contacting Principles and Applications. Industrial & Engineering Chemistry Research, 2005, 44, 9750-9769.	1.8	269
110	Experimental studies on the dual continuous flow pattern in oil–water flows. International Journal of Multiphase Flow, 2004, 30, 139-157.	1.6	156
111	A model for predicting axial mixing during gas–liquid Taylor flow in microchannels at low Bodenstein numbers. Chemical Engineering Journal, 2004, 101, 391-396.	6.6	46
112	Separation studies in a continuous flow fluorous biphasic system. Journal of Molecular Catalysis A, 2004, 221, 19-27.	4.8	5
113	Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage. Chemical Engineering Journal, 2004, 101, 379-390.	6.6	173
114	Droplet size and velocity profiles in liquid–liquid horizontal flows. Chemical Engineering Science, 2004, 59, 3105-3115.	1.9	50
115	A continuous process concept for homogeneous catalysis in fluorous biphasic systems. Chemical Engineering Science, 2004, 59, 4983-4989.	1.9	13
116	The design of a continuous reactor for fluorous biphasic reactions under pressure and its use in alkene hydroformylationElectronic supplementary information (ESI) available: Fig. S1: Photograph of the continuous flow reactor. See http://www.rsc.org/suppdata/dt/b4/b404760e/. Dalton Transactions, 2004, , 2062.	1.6	20
117	Low Inclination Oilâ€water Flows. Canadian Journal of Chemical Engineering, 2004, 82, 303-315.	0.9	24
118	Scale-down studies on the hydrodynamics of two-liquid phase biocatalytic reactors. Bioprocess and Biosystems Engineering, 2002, 25, 143-153.	1.7	25
119	Technology and Applications of Microengineered Reactors. Chemical Engineering Research and Design, 2002, 80, 3-30.	2.7	199
120	Mixing characteristics of T-type microfluidic mixers. Journal of Micromechanics and Microengineering, 2001, 11, 126-132.	1.5	301
121	Droplet Size in Two-Phase Liquid Dispersed Pipeline Flows. Chemical Engineering and Technology, 2001, 24, 431-434.	0.9	7
122	Flow structure in horizontal oil–water flow. International Journal of Multiphase Flow, 2000, 26, 1117-1140.	1.6	250
123	Drop size distributions in horizontal oil-water dispersed flows. Chemical Engineering Science, 2000, 55, 3133-3143.	1.9	129
124	Pressure gradient in horizontal liquid–liquid flows. International Journal of Multiphase Flow, 1999, 24, 1183-1203.	1.6	142