Evangelos Tsotsas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2191118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal conductivity of packed beds: A review. Chemical Engineering and Processing: Process Intensification, 1987, 22, 19-37.	1.8	232
2	Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science and Emerging Technologies, 2017, 39, 101-112.	2.7	169
3	A simple and coherent set of coefficients for modelling of heat and mass transport with and without chemical reaction in tubes filled with spheres. Chemical Engineering Science, 2000, 55, 967-979.	1.9	155
4	Mixing of particles in rotary drums: A comparison of discrete element simulations with experimental results and penetration models for thermal processes. Powder Technology, 2006, 161, 69-78.	2.1	126
5	Heat transfer in packed beds with fluid flow: remarks on the meaning and the calculation of a heat transfer coefficient at the wall. Chemical Engineering Science, 1990, 45, 819-837.	1.9	112
6	METHODS FOR PROCESSING EXPERIMENTAL DRYING KINETICS DATA. Drying Technology, 2001, 19, 15-34.	1.7	106
7	Impact of tube-to-particle-diameter ratio on pressure drop in packed beds. AICHE Journal, 2000, 46, 1084-1088.	1.8	91
8	Microwave- and ultrasound-assisted convective drying of raspberries: Drying kinetics and microstructural changes. Drying Technology, 2019, 37, 1-12.	1.7	84
9	Experimental investigation and modelling of continuous fluidized bed drying under steady-state and dynamic conditions. Chemical Engineering Science, 2002, 57, 5021-5038.	1.9	80
10	Catalytic Membrane Reactors for Partial Oxidation Using Perovskite Hollow Fiber Membranes and for Partial Hydrogenation Using a Catalytic Membrane Contactor. Industrial & Engineering Chemistry Research, 2007, 46, 2286-2294.	1.8	80
11	Kinetics of fluidized bed spray agglomeration for compact and porous particles. Chemical Engineering Science, 2011, 66, 1866-1878.	1.9	76
12	Influence of Pore Size Distribution on Drying Kinetics: A Simple Capillary Model. Drying Technology, 2005, 23, 1797-1809.	1.7	73
13	Influence of pore structure on drying kinetics: A pore network study. AICHE Journal, 2007, 53, 3029-3041.	1.8	71
14	Stochastic simulation of agglomerate formation in fluidized bed spray drying: A micro-scale approach. Chemical Engineering Science, 2009, 64, 2631-2643.	1.9	67
15	Continuous versus discrete modelling of heat transfer to agitated beds. Powder Technology, 2008, 181, 331-342.	2.1	65
16	On axial dispersion in packed beds with fluid flow. Chemical Engineering and Processing: Process Intensification, 1988, 24, 15-31.	1.8	62
17	Drying Kinetics and Microstructural and SensoryProperties of Black Chokeberry (Aronia) Tj ETQq1 1 0.784314 rg	BT/Qverlc	ock 10 Tf 50
18	Influence of drying conditions on layer porosity in fluidized bed spray granulation. Powder Technology, 2015, 272, 120-131.	2.1	62

#	Article	IF	CITATIONS
19	Consideration of heat transfer in pore network modelling of convective drying. International Journal of Heat and Mass Transfer, 2008, 51, 2506-2518.	2.5	60
20	Investigation of the kinetics of fluidized bed spray agglomeration based on stochastic methods. AICHE Journal, 2011, 57, 3012-3026.	1.8	58
21	From hygroscopic single particle to batch fluidized bed drying kinetics. Canadian Journal of Chemical Engineering, 1999, 77, 333-341.	0.9	57
22	Characterization of the internal morphology of agglomerates produced in a spray fluidized bed by X-ray tomography. Powder Technology, 2012, 228, 349-358.	2.1	55
23	Correlations for effective heat transport coefficients in beds packed with cylindrical particles. Chemical Engineering Science, 2000, 55, 5937-5943.	1.9	54
24	Isothermal Drying of Pore Networks: Influence of Friction for Different Pore Structures. Drying Technology, 2007, 25, 49-57.	1.7	54
25	A generic population balance model for simultaneous agglomeration and drying in fluidized beds. Chemical Engineering Science, 2007, 62, 513-532.	1.9	54
26	Two-phase flow with capillary valve effect in porous media. Chemical Engineering Science, 2016, 139, 241-248.	1.9	54
27	Investigation of coating layer morphology by micro-computed X-ray tomography. Powder Technology, 2015, 273, 165-175.	2.1	51
28	Modeling of inter- and intra-particle coating uniformity in a Wurster fluidized bed by a coupled CFD-DEM-Monte Carlo approach. Chemical Engineering Science, 2020, 211, 115289.	1.9	51
29	Drying with Formation of Capillary Rings in a Model Porous Medium. Transport in Porous Media, 2015, 110, 197-223.	1.2	50
30	Continuous pellet coating in a Wurster fluidized bed process. Chemical Engineering Science, 2013, 86, 87-98.	1.9	49
31	Contact drying of mechanically agitated particulate material in the presence of inert gas. Chemical Engineering and Processing: Process Intensification, 1986, 20, 277-285.	1.8	48
32	Determination of single-particle drying kinetics in an acoustic levitator. Chemical Engineering Journal, 2002, 86, 217-222.	6.6	48
33	Two-phase and two-dimensional model describing heat and water transfer during solid-state fermentation within a packed-bed bioreactor. Chemical Engineering Journal, 2016, 287, 103-116.	6.6	48
34	Drying in fluidized beds with immersed heating elements. Chemical Engineering Science, 2007, 62, 481-502.	1.9	47
35	Modelling of heat transport in beds packed with spherical particles for various bed geometries and/or thermal boundary conditions. International Journal of Thermal Sciences, 2000, 39, 556-570.	2.6	46
36	DEM-CFD investigation of particle residence time distribution in top-spray fluidised bed granulation. Chemical Engineering Science, 2017, 161, 187-197.	1.9	46

#	Article	IF	CITATIONS
37	Modeling spray fluidized bed aggregation kinetics on the basis of Monte-Carlo simulation results. Chemical Engineering Science, 2013, 101, 35-45.	1.9	45
38	Three dimensional characterization of morphology and internal structure of soft material agglomerates produced in spray fluidized bed by X-ray tomography. Powder Technology, 2016, 300, 46-60.	2.1	43
39	Micro-model experiments and pore network simulations of liquid imbibition in porous media. Chemical Engineering Science, 2016, 150, 41-53.	1.9	43
40	A NEW MODEL FOR FLUID BED DRYING. Drying Technology, 1997, 15, 1687-1698.	1.7	41
41	Color-PTV measurement and CFD-DEM simulation of the dynamics of poly-disperse particle systems in a pseudo-2D fluidized bed. Chemical Engineering Science, 2018, 179, 115-132.	1.9	41
42	Viscous stabilization of drying front: Three-dimensional pore network simulations. Chemical Engineering Research and Design, 2008, 86, 739-744.	2.7	40
43	Continuous species transport and population balance models for first drying stage of nanosuspension droplets. Chemical Engineering Journal, 2012, 210, 120-135.	6.6	40
44	Modeling of the Wall Effect in Packed Bed Adsorption. Chemical Engineering and Technology, 2004, 27, 1179-1186.	0.9	39
45	Influence of Drying Kinetics on Particle Formation: A Personal Perspective. Drying Technology, 2012, 30, 1167-1175.	1.7	39
46	Derivation of parameters for a two compartment population balance model of Wurster fluidised bed granulation. Powder Technology, 2013, 238, 122-131.	2.1	39
47	Reduction of a model for single droplet drying and application to CFD of skim milk spray drying. Drying Technology, 2017, 35, 1571-1583.	1.7	39
48	A comparative study on optical techniques for the estimation of granular flow velocities. Chemical Engineering Science, 2015, 131, 63-75.	1.9	38
49	Mass and Heat Transport Models for Analysis of the Drying Process in Porous Media: A Review and Numerical Implementation. International Journal of Chemical Engineering, 2018, 2018, 1-13.	1.4	38
50	Estimation of particle dynamics in 2-D fluidized beds using particle tracking velocimetry. Particuology, 2015, 22, 39-51.	2.0	37
51	On two-compartment population balance modeling of spray fluidized bed agglomeration. Computers and Chemical Engineering, 2014, 61, 185-202.	2.0	36
52	A volume onsistent discrete formulation of aggregation population balance equations. Mathematical Methods in the Applied Sciences, 2016, 39, 2275-2286.	1.2	36
53	FROM SINGLE PARTICLE TO FLUID BED DRYING KINETICS. Drying Technology, 1994, 12, 1401-1426.	1.7	35
54	Pore Network Drying Model for Particle Aggregates: Assessment by X-Ray Microtomography. Drying Technology, 2012, 30, 1800-1809.	1.7	35

#	Article	IF	CITATIONS
55	Predictive CFD modeling of whey protein denaturation in skim milk spray drying powder production. Advanced Powder Technology, 2017, 28, 3140-3147.	2.0	35
56	Modeling of Contact Dryers. Drying Technology, 2007, 25, 1377-1391.	1.7	34
57	Influence of process conditions on the product properties in a continuous fluidized bed spray granulation process. Chemical Engineering Research and Design, 2018, 139, 104-115.	2.7	34
58	Vacuum contact drying of mechanically agitated beds: The influence of hygroscopic behaviour on the drying rate curve. Chemical Engineering and Processing: Process Intensification, 1987, 21, 199-208.	1.8	33
59	A novel, structureâ€tracking monte carlo algorithm for spray fluidized bed agglomeration. AICHE Journal, 2012, 58, 3016-3029.	1.8	33
60	Influence of process variables on internal particle structure in spray fluidized bed agglomeration. Powder Technology, 2014, 258, 165-173.	2.1	33
61	Particle-particle heat transfer in thermal DEM: Three competing models and a new equation. International Journal of Heat and Mass Transfer, 2019, 132, 939-943.	2.5	33
62	Tomographic measurement of breakthrough in a packed bed adsorber. Chemical Engineering Science, 2005, 60, 517-522.	1.9	32
63	A proposal for discrete modeling of mechanical effects during drying, combining pore networks with DEM. AICHE Journal, 2011, 57, 872-885.	1.8	32
64	Enhanced methods for experimental investigation of single droplet drying kinetics and application to lactose/water. Drying Technology, 2016, 34, 1185-1195.	1.7	32
65	Influence of pore structure and impregnation–drying conditions on the solid distribution in porous support materials. Drying Technology, 2016, 34, 1964-1978.	1.7	32
66	CFD–DEM study of residence time, droplet deposition, and collision velocity for a binary particle mixture in a Wurster fluidized bed coater. Drying Technology, 2018, 36, 638-650.	1.7	32
67	Drying Simulations of Various 3D Pore Structures by a Nonisothermal Pore Network Model. Drying Technology, 2010, 28, 615-623.	1.7	31
68	Population balance model for drying of droplets containing aggregating nanoparticles. AICHE Journal, 2012, 58, 3318-3328.	1.8	31
69	Experimental spray zone characterization in top-spray fluidized bed granulation. Chemical Engineering Science, 2014, 116, 317-330.	1.9	31
70	Heat and mass transfer in tubular ceramic membranes for membrane reactors. International Journal of Heat and Mass Transfer, 2006, 49, 2239-2253.	2.5	30
71	Experimental Investigation of Drying in a Model Porous Medium: Influence of Thermal Gradients. Drying Technology, 2013, 31, 920-929.	1.7	30
72	Model-based control of particle properties in fluidised bed spray granulation. Powder Technology, 2015, 270, 575-583.	2.1	30

#	Article	IF	CITATIONS
73	Development and Convergence Analysis of a Finite Volume Scheme for Solving Breakage Equation. SIAM Journal on Numerical Analysis, 2015, 53, 1672-1689.	1.1	30
74	Capillary valve effect during slow drying of porous media. International Journal of Heat and Mass Transfer, 2016, 94, 81-86.	2.5	30
75	PTV measurement and DEM simulation of the particle motion in a flighted rotating drum. Powder Technology, 2020, 363, 23-37.	2.1	30
76	An accurate and efficient discrete formulation of aggregation population balance equation. Kinetic and Related Models, 2016, 9, 373-391.	0.5	30
77	Vacuum contact drying of free flowing mechanically agitated multigranular packings. Chemical Engineering and Processing: Process Intensification, 1986, 20, 339-349.	1.8	29
78	Influence of heating mode on drying behavior of capillary porous media: Pore scale modeling. Chemical Engineering Science, 2008, 63, 5218-5228.	1.9	29
79	Model parameters for single-droplet drying of skim milk and its constituents at moderate and elevated temperatures. Drying Technology, 2017, 35, 444-464.	1.7	29
80	CFD simulation of particle residence time distribution in industrial scale horizontal fluidized bed. Powder Technology, 2019, 345, 129-139.	2.1	29
81	Analysis of a fluidized bed membrane reactor for butane partial oxidation to maleic anhydride: 2D modelling. Chemical Engineering Science, 2010, 65, 3538-3548.	1.9	28
82	Comparative analysis of the coating thickness on single particles using X-ray micro-computed tomography and confocal laser-scanning microscopy. Powder Technology, 2016, 287, 330-340.	2.1	28
83	Experimental measurements of particle collision dynamics in a pseudo-2D gas-solid fluidized bed. Chemical Engineering Science, 2017, 167, 297-316.	1.9	28
84	Some remarks on channelling and on radial dispersion in packed beds. Chemical Engineering Science, 1988, 43, 1200-1203.	1.9	27
85	Analysis of single and multi-stage membrane reactors for the oxidation of short-chain alkanes—Simulation study and pilot scale experiments. Chemical Engineering Research and Design, 2008, 86, 753-764.	2.7	27
86	Moisture content and residence time distributions in mixed-flow grain dryers. Biosystems Engineering, 2011, 109, 297-307.	1.9	27
87	Experimental study and modeling of particle drying in a continuously-operated horizontal fluidized bed. Particuology, 2017, 34, 134-146.	2.0	27
88	Monte Carlo modeling of binder‣ess spray agglomeration in fluidized beds. AICHE Journal, 2018, 64, 3582-3594.	1.8	27
89	Measurements of mass transfer between particles and gas in packed tubes at very low tube to particle diameter ratios. Heat and Mass Transfer, 1990, 25, 245-256.	0.2	26
90	Model-based Control of Enzyme Yield in Solid-state Fermentation. Procedia Engineering, 2015, 102, 362-371.	1.2	26

#	Article	IF	CITATIONS
91	Drying behavior and locking point of single droplets containing functional oil. Advanced Powder Technology, 2016, 27, 1750-1760.	2.0	26
92	Formation of fouling layers on a heat exchanger element exposed to warm, humid and solid loaded air streams. Experimental Thermal and Fluid Science, 2002, 26, 291-297.	1.5	25
93	Experimental investigation of process stability of continuous spray fluidized bed layering with external product separation. Chemical Engineering Science, 2015, 137, 466-475.	1.9	25
94	An improved and efficient finite volume scheme for bivariate aggregation population balance equation. Journal of Computational and Applied Mathematics, 2016, 308, 83-97.	1.1	25
95	Lattice Boltzmann method to study the water-oxygen distributions in porous transport layer (PTL) of polymer electrolyte membrane (PEM) electrolyser. International Journal of Hydrogen Energy, 2021, 46, 22747-22762.	3.8	25
96	On mass transfer, dispersion, and macroscopical flow maldistribution in packed tubes. Chemical Engineering and Processing: Process Intensification, 1992, 31, 181-190.	1.8	24
97	A new framework for population balance modeling of spray fluidized bed agglomeration. Particuology, 2015, 19, 141-154.	2.0	24
98	Experimental investigation of process stability of continuous spray fluidized bed layering with internal separation. Chemical Engineering Science, 2015, 126, 55-66.	1.9	24
99	Multiscale Approaches to Processes That Combine Drying with Particle Formation. Drying Technology, 2015, 33, 1859-1871.	1.7	24
100	PTV experiments and DEM simulations of the coefficient of restitution for irregular particles impacting on horizontal substrates. Powder Technology, 2020, 360, 352-365.	2.1	24
101	Pore network model of evaporation in porous media with continuous and discontinuous corner films. Physical Review Fluids, 2020, 5, .	1.0	24
102	Empirical Macroscopic Model for Drying of Porous Media Based on Pore Networks and Scaling Theory. Drying Technology, 2010, 28, 991-1000.	1.7	23
103	An irregular pore network model for convective drying and resulting damage of particle aggregates. Chemical Engineering Science, 2012, 75, 267-278.	1.9	23
104	Modeling of aggregation kernel using Monte Carlo simulations of spray fluidized bed agglomeration. AICHE Journal, 2014, 60, 855-868.	1.8	23
105	Influence of zone formation on stability of continuous fluidized bed layering granulation with external product classification. Particuology, 2015, 23, 1-7.	2.0	23
106	Convective drying in thin hydrophobic porous media. International Journal of Heat and Mass Transfer, 2017, 112, 630-642.	2.5	23
107	Evaporation in Capillary Porous Media at the Perfect Piston‣ike Invasion Limit: Evidence of Nonlocal Equilibrium Effects. Water Resources Research, 2017, 53, 10433-10449.	1.7	23
108	Determination of fractal dimension and prefactor of agglomerates with irregular structure. Powder Technology, 2019, 343, 765-774.	2.1	23

#	Article	IF	CITATIONS
109	Influence of thermal gradients on the invasion patterns during drying of porous media: A lattice Boltzmann method. Physics of Fluids, 2020, 32, .	1.6	23
110	Impact of particle size dispersity on thermal conductivity of packed beds: Measurement, numerical simulation, prediction. Chemical Engineering and Technology, 1991, 14, 421-427.	0.9	22
111	PREDICTING APPARENT SHERWOOD NUMBERS FOR FLUIDIZED BEDS. Drying Technology, 1999, 17, 1557-1570.	1.7	22
112	A Non-isothermal Pore Network Drying Model with Gravity Effect. Transport in Porous Media, 2009, 80, 431-439.	1.2	22
113	An analytical solution of population balance equations for continuous fluidized bed drying. Chemical Engineering Science, 2011, 66, 1916-1922.	1.9	22
114	Investigation of the residence time behavior of particulate products and correlation for the Bodenstein number in horizontal fluidized beds. Powder Technology, 2016, 301, 1067-1076.	2.1	22
115	Finite volume approximations of breakage population balance equation. Chemical Engineering Research and Design, 2016, 110, 114-122.	2.7	22
116	Experimental investigation and correlation of the Bodenstein number in horizontal fluidized beds with internal baffles. Powder Technology, 2017, 308, 378-387.	2.1	22
117	Kinematics in a slowly drying porous medium: Reconciliation of pore network simulations and continuum modeling. Physics of Fluids, 2017, 29, 022102.	1.6	22
118	Novel Technique for Coating of Fine Particles Using Fluidized Bed and Aerosol Atomizer. Processes, 2020, 8, 1525.	1.3	22
119	Thermal and flow effects during adsorption in conventional, diluted and annular packed beds. Chemical Engineering Science, 2010, 65, 4250-4260.	1.9	21
120	Stochastic Modeling of Fluidized Bed Granulation: Influence of Droplet Preâ€Ðrying. Chemical Engineering and Technology, 2011, 34, 1177-1184.	0.9	21
121	Particle–Gas Mass Transfer in a Spouted Bed with Adjustable Air Inlet. Drying Technology, 2011, 29, 257-265.	1.7	21
122	Influence of operation parameters on process stability in continuous fluidised bed layering with external product classification. Powder Technology, 2016, 300, 37-45.	2.1	21
123	A tunable aggregation model incorporated in Monte Carlo simulations of spray fluidized bed agglomeration. Powder Technology, 2020, 364, 417-428.	2.1	21
124	Restoration of particle size distributions from fiber-optical in-line measurements in fluidized bed processes. Chemical Engineering Science, 2011, 66, 2842-2852.	1.9	20
125	Particle Residence Times in Fluidized Bed Granulation Equipments. Chemical Engineering and Technology, 2011, 34, 1116-1122.	0.9	20
126	Reconsideration of the hydrodynamic behavior of fluidized beds operated under reduced pressure. Powder Technology, 2016, 287, 169-176.	2.1	20

#	Article	IF	CITATIONS
127	Continuum-scale modeling of superheated steam drying of cellular plant porous media. International Journal of Heat and Mass Transfer, 2018, 124, 1033-1044.	2.5	20
128	Spatial morphology of maltodextrin agglomerates from X-ray microtomographic data: Real structure evaluation vs. spherical primary particle model. Powder Technology, 2018, 331, 204-217.	2.1	20
129	Transport parameters of macroscopic continuum model determined from discrete pore network simulations of drying porous media: Throat-node vs. throat-pore configurations. Chemical Engineering Science, 2020, 223, 115723.	1.9	20
130	Estimation of the dominant size enlargement mechanism in spray fluidized bed processes. AICHE Journal, 2020, 66, e16920.	1.8	20
131	Steady-State Water Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study. Processes, 2020, 8, 362.	1.3	20
132	Discrete pore network modeling of superheated steam drying. Drying Technology, 2017, 35, 1584-1601.	1.7	19
133	A dynamic two-zone model of continuous fluidized bed layering granulation with internal product classification. Particuology, 2017, 31, 8-14.	2.0	19
134	A pore network study of evaporation from the surface of a drying nonâ€hygroscopic porous medium. AICHE Journal, 2018, 64, 1435-1447.	1.8	19
135	Particle dynamics in a multi-staged fluidized bed: Particle transport behavior on micro-scale by discrete particle modelling. Advanced Powder Technology, 2019, 30, 2014-2031.	2.0	19
136	Impact of operating conditions on a single droplet and spray drying of hydroxypropylated pea starch: Process performance and final powder properties. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2268.	0.8	19
137	Prediction of particle size and layer-thickness distributions in a continuous horizontal fluidized-bed coating process. Particuology, 2020, 50, 1-12.	2.0	19
138	Determination of Kinetics and Equilibria for Adsorption of Water Vapor on Single Zeolite Particles by a Magnetic Suspension Balance. Chemical Engineering and Technology, 2004, 27, 681-686.	0.9	18
139	An improved discretized tracer mass distribution of Hounslow et al AICHE Journal, 2006, 52, 1326-1332.	1.8	18
140	Transient natural convection and heat transfer during the storage of granular media. International Journal of Heat and Mass Transfer, 2008, 51, 3468-3477.	2.5	18
141	Analysis of Residence Time Distribution Data in Horizontal Fluidized Beds. Procedia Engineering, 2015, 102, 790-798.	1.2	18
142	Lattice Boltzmann simulations for micro-macro interactions during isothermal drying of bundle of capillaries. Chemical Engineering Science, 2020, 220, 115634.	1.9	18
143	Fractal analysis of aggregates: Correlation between the 2D and 3D box-counting fractal dimension and power law fractal dimension. Chaos, Solitons and Fractals, 2022, 160, 112246.	2.5	18
144	Numerical calculation of the thermal conductivity of two regular bidispersed beds of spherical particles. Computers and Chemical Engineering, 1990, 14, 1031-1038.	2.0	17

#	Article	IF	CITATIONS
145	Towards a Complete Population Balance Model for Fluidized-Bed Spray Agglomeration. Drying Technology, 2007, 25, 1321-1329.	1.7	17
146	Modeling aggregation kinetics of fluidized bed spray agglomeration for porous particles. Powder Technology, 2015, 270, 584-591.	2.1	17
147	Experimental and numerical study of the airflow distribution in mixed-flow grain dryers. Drying Technology, 2016, 34, 595-607.	1.7	17
148	Superheated steam drying of single wood particles: A characteristic drying curve model deduced from continuum model simulations and assessed by experiments. Drying Technology, 2018, 36, 1866-1881.	1.7	17
149	Continuous modeling of superheated steam drying of single rice grains. Drying Technology, 2019, 37, 1583-1596.	1.7	17
150	Influence of operating parameters on process behavior and product quality in continuous spray fluidized bed agglomeration. Powder Technology, 2020, 375, 210-220.	2.1	17
151	M7 Heat and Mass Transfer in Packed Beds with Fluid Flow. , 2010, , 1327-1342.		17
152	Modeling and Numerical Analysis of an Atypical Convective Coal Drying Process. Drying Technology, 2004, 22, 2351-2373.	1.7	16
153	Remarks on the paper "Extension of Hoshen–Kopelman algorithm to non-lattice environments―by A. Al-Futaisi and T.W. Patzek, Physica A 321 (2003) 665–678. Physica A: Statistical Mechanics and Its Applications, 2006, 363, 558-560.	1.2	16
154	Modern Modelling Methods in Drying. Transport in Porous Media, 2007, 66, 103-120.	1.2	16
155	Influence of Granule Porosity during Fluidized Bed Spray Granulation. Procedia Engineering, 2015, 102, 458-467.	1.2	16
156	Model predictive control of continuous layering granulation in fluidised beds with internal product classification. Journal of Process Control, 2016, 45, 65-75.	1.7	16
157	Inductive heating of fluidized beds: Drying of particulate solids. Powder Technology, 2017, 306, 26-33.	2.1	16
158	Stochastic model to simulate spray fluidized bed agglomeration: a morphological approach. Powder Technology, 2019, 355, 449-460.	2.1	16
159	Reaction engineering approach for modeling single wood particle drying at elevated air temperature. Chemical Engineering Science, 2019, 199, 602-612.	1.9	16
160	CFD simulation of agglomeration and coalescence in spray dryer. Chemical Engineering Science, 2022, 247, 117064.	1.9	16
161	Temperature gradient induced double stabilization of the evaporation front within a drying porous medium. Physical Review Fluids, 2018, 3, .	1.0	16
162	Fractal Phase Distribution and Drying: Impact on Two-Phase Zone Scaling and Drying Time Scale Dependence. Drying Technology, 2012, 30, 1129-1135.	1.7	15

#	Article	IF	CITATIONS
163	Numerical simulation of particulate processes for control and estimation by spectral methods. AICHE Journal, 2012, 58, 2309-2319.	1.8	15
164	Inductive heating of fluidized beds: Influence on fluidization behavior. Powder Technology, 2015, 286, 90-97.	2.1	15
165	Monte Carlo modeling of fluidized bed coating and layering processes. AICHE Journal, 2016, 62, 2670-2680.	1.8	15
166	From micro-scale to macro-scale modeling of solute transport in drying capillary porous media. International Journal of Heat and Mass Transfer, 2021, 165, 120722.	2.5	15
167	Three-dimensional visualization and modeling of capillary liquid rings observed during drying of dense particle packings. International Journal of Heat and Mass Transfer, 2021, 177, 121505.	2.5	15
168	Influence of Thermal Conditions on Particle Properties in Fluidized Bed Layering Granulation. Processes, 2018, 6, 235.	1.3	15
169	Residence Time Distribution in Mixed-Flow Grain Dryers. Drying Technology, 2011, 29, 1252-1266.	1.7	14
170	Pore Network Simulations of Heat and Mass Transfer inside an Unsaturated Capillary Porous Wick in the Dry-out Regime. Transport in Porous Media, 2016, 114, 623-648.	1.2	14
171	Determination of particle exchange rates at over-flow weirs in horizontal fluidised beds by particle tracking velocimetry. Particuology, 2017, 32, 1-9.	2.0	14
172	Experimental investigation of the influence of drying conditions on process stability of continuous spray fluidized bed layering granulation with external product separation. Powder Technology, 2017, 320, 474-482.	2.1	14
173	Parameter Identification For Continuous Fluidized Bed Spray Agglomeration. Processes, 2018, 6, 246.	1.3	14
174	Non-local equilibrium continuum modeling of partially saturated drying porous media: Comparison with pore network simulations. Chemical Engineering Science, 2020, 228, 115957.	1.9	14
175	Characterization of Particulate Materials in Respect to Drying. Drying Technology, 2006, 24, 1083-1092.	1.7	13
176	Biomass Combustion in a Fluidized-Bed System: An Integrated Model for Dynamic Plant Simulations. Industrial & Engineering Chemistry Research, 2011, 50, 9936-9943.	1.8	13
177	Particle velocity profiles and residence time distribution in mixed-flow grain dryers. Granular Matter, 2011, 13, 159-168.	1.1	13
178	Stochastic Modeling of Fluidized Bed Agglomeration: Determination of Particle Moisture Content. Drying Technology, 2013, 31, 1764-1771.	1.7	13
179	Study of the morphology of solidified binder in spray fluidized bed agglomerates by X-ray tomography. Powder Technology, 2014, 264, 256-264.	2.1	13
180	Monitoring of initial porosity and new pores formation during drying: A scientific debate and a technical challenge. Trends in Food Science and Technology, 2015, 45, 179-186.	7.8	13

#	Article	IF	CITATIONS
181	Interaction of droplets with porous structures: Pore network simulation of wetting and drying. Drying Technology, 2016, 34, 1129-1140.	1.7	13
182	Pore Network Simulation of Gas-Liquid Distribution in Porous Transport Layers. Processes, 2019, 7, 558.	1.3	13
183	Influence of process variables on spray agglomeration process in a continuously operated horizontal fluidized bed. Powder Technology, 2020, 363, 195-206.	2.1	13
184	On the Applicability of Normalization for Drying Kinetics. Drying Technology, 2007, 26, 90-96.	1.7	12
185	Lotion Distribution in Wet Wipes Investigated by Pore Network Simulation and X-ray Micro Tomography. Transport in Porous Media, 2015, 107, 449-468.	1.2	12
186	Prediction of Shell Porosities in Continuous Fluidized Bed Spray Layering. Drying Technology, 2015, 33, 1662-1670.	1.7	12
187	Shell porosity in spray fluidized bed coating with suspensions. Advanced Powder Technology, 2017, 28, 2921-2928.	2.0	12
188	Experimental study of the particle motion in flighted rotating drums by means of Magnetic Particle Tracking. Powder Technology, 2018, 339, 817-826.	2.1	12
189	Influence of separation properties and processing strategies on product characteristics in continuous fluidized bed spray granulation. Powder Technology, 2019, 342, 572-584.	2.1	12
190	Freeze-Drying with Structured Sublimation Fronts—Visualization with Neutron Imaging. Processes, 2020, 8, 1091.	1.3	12
191	Pore-scale physics of drying porous media revealed by Lattice Boltzmann simulations. Drying Technology, 2022, 40, 1114-1129.	1.7	12
192	Influence of the number of flights on the dilute phase ratio in flighted rotating drums by PTV measurements and DEM simulations. Particuology, 2021, 56, 171-182.	2.0	12
193	Model-Based Analysis of Convective Grain Drying Processes. Drying Technology, 2005, 23, 1895-1908.	1.7	11
194	Modelâ€based measurement of particle size distributions in layering granulation processes. AICHE Journal, 2011, 57, 929-941.	1.8	11
195	Superheated Steam Drying of Foods and Biomaterials. , 2014, , 57-84.		11
196	Numerical study of the hydrodynamics of fluidized beds operated under sub-atmospheric pressure. Chemical Engineering Journal, 2019, 372, 1134-1153.	6.6	11
197	The Brooks and Corey Capillary Pressure Model Revisited from Pore Network Simulations of Capillarity-Controlled Invasion Percolation Process. Processes, 2020, 8, 1318.	1.3	11
198	Kernel identification in continuous fluidized bed spray agglomeration from steady state data. Advanced Powder Technology, 2021, 32, 2517-2529.	2.0	11

#	Article	IF	CITATIONS
199	Prozessdynamik der Wirbelschichtgranulierung. Chemie-Ingenieur-Technik, 2011, 83, 658-664.	0.4	10
200	Investigation of heat transfer in partially filled horizontal drums. Chemical Engineering Journal, 2017, 316, 988-1003.	6.6	10
201	Determination of the moisture transport coefficient from pore network simulations of spontaneous imbibition in capillary porous media. Chemical Engineering Science, 2019, 207, 600-610.	1.9	10
202	Estimation of the local sublimation front velocities from neutron radiography and tomography of particulate matter. Chemical Engineering Science, 2020, 211, 115268.	1.9	10
203	Ultrathin coating of particles in fluidized bed using submicron droplet aerosol. Particuology, 2020, 53, 23-29.	2.0	10
204	Influence of polydispersity and breakage on stochastic simulations of spray fluidized bed agglomeration. Chemical Engineering Science, 2022, 247, 117022.	1.9	10
205	Effective thermal conductivity of packed beds made of cubical particles. International Journal of Heat and Mass Transfer, 2022, 194, 122994.	2.5	10
206	Entwicklungsstand und Perspektiven der Modellierung von TransportvorgÄ ¤ gen in durchstrĶmten Festbetten. Chemie-Ingenieur-Technik, 2000, 72, 313-321.	0.4	9
207	Network models for capillary porous media: application to drying technology. Chemie-Ingenieur-Technik, 2010, 82, 869-879.	0.4	9
208	Micro-scale fluid model for drying of highly porous particle aggregates. Computers and Chemical Engineering, 2013, 52, 46-54.	2.0	9
209	Estimation of Particle Rotation in Fluidized Beds by Means of PTV. Procedia Engineering, 2015, 102, 841-849.	1.2	9
210	Dynamic Multi-Zone Population Balance Model of Particle Formulation in Fluidized Beds. Procedia Engineering, 2015, 102, 1456-1465.	1.2	9
211	Inductive heating of fluidized beds: Spray coating process. Powder Technology, 2018, 328, 26-37.	2.1	9
212	Experimental investigation of the morphology of salt deposits from drying sessile droplets by whiteâ€ l ight interferometry. AICHE Journal, 2018, 64, 2002-2016.	1.8	9
213	Design study of printer nozzle spray dryer by computational fluid dynamics modeling. Drying Technology, 2020, 38, 211-223.	1.7	9
214	Development of an experimental setup for in situ visualization of lyophilization using neutron radiography and computed tomography. Review of Scientific Instruments, 2020, 91, 014102.	0.6	9
215	A Fast and Improved Tunable Aggregation Model for Stochastic Simulation of Spray Fluidized Bed Agglomeration. Energies, 2021, 14, 7221.	1.6	9
216	Eine einfache empirische Gleichung zur Vorausberechnung der Porositäpolydisperser Kugelschüttungen. Chemie-Ingenieur-Technik, 1991, 63, 495-496.	0.4	8

#	Article	IF	CITATIONS
217	Interfacial convection during evaporation of binary mixtures from porous obstacles. AICHE Journal, 2005, 51, 3257-3274.	1.8	8
218	Experimental and Theoretical Investigation of Concentration and Temperature Profiles in a Narrow Packed Bed Adsorber. Chemical Engineering and Technology, 2006, 29, 910-915.	0.9	8
219	A Framework and Numerical Solution of the Drying Process in Porous Media by Using a Continuous Model. International Journal of Chemical Engineering, 2019, 2019, 1-16.	1.4	8
220	Superheated Steam Drying of Single Wood Particles: Modeling and Comparative Study with Hot Air Drying. Chemical Engineering and Technology, 2021, 44, 114-123.	0.9	8
221	In silico investigation of the evaporation flux distribution along sessile droplet surfaces during convective drying. Chemical Engineering Science, 2021, 238, 116590.	1.9	8
222	Heat transfer during evaporation and condensation of binary mixtures. Chemical Engineering and Processing: Process Intensification, 1987, 21, 209-215.	1.8	7
223	Transportvorgäge in Festbetten Geschichte, Stand und Perspektiven der Forschung. Chemie-Ingenieur-Technik, 1992, 64, 313-322.	0.4	7
224	Inline method of droplet and particle size distribution analysis in dilute disperse systems. Advanced Powder Technology, 2017, 28, 2820-2829.	2.0	7
225	A model of pulse combustion drying and breakup of colloidal suspension droplets. Powder Technology, 2019, 355, 755-769.	2.1	7
226	Computational Optimization of Porous Structures for Electrochemical Processes. Processes, 2020, 8, 1205.	1.3	7
227	Insights into evaporation from the surface of capillary porous media gained by discrete pore network simulations. International Journal of Heat and Mass Transfer, 2021, 168, 120877.	2.5	7
228	Monte Carlo modeling of spray agglomeration in a cylindrical fluidized bed: From batch-wise to continuous processes. Powder Technology, 2022, 396, 113-126.	2.1	7
229	Coating layer formation from deposited droplets: A comparison of nanofluid, microfluid and solution. Powder Technology, 2022, 399, 117202.	2.1	7
230	EXPERIMENTAL INVESTIGATION AND MODELING OF THE INFLUENCE OF INDIRECT HEATING ON FLUIDIZED BED DRYING. Drying Technology, 2001, 19, 1739-1754.	1.7	6
231	Micro-Macro Transition of Population Balances in Fluidized Bed Granulation. Procedia Engineering, 2015, 102, 1399-1407.	1.2	6
232	Influence of mill characteristics on stability of continuous layering granulation with external product classification. Computer Aided Chemical Engineering, 2016, 38, 1275-1280.	0.3	6
233	Reduction of energy consumption in batch fluidized bed layering granulation processes by temporal separation. Chemical Engineering Research and Design, 2016, 110, 2-11.	2.7	6
234	Coating of finely dispersed particles by two-fluid nozzle. Particuology, 2018, 38, 80-93.	2.0	6

14

#	Article	IF	CITATIONS
235	Microwave-assisted drying of clay roof tiles. Drying Technology, 0, , 1-15.	1.7	6
236	Drying of capillary porous media simulated by coupling of continuum-scale and micro-scale models. International Journal of Multiphase Flow, 2021, 140, 103654.	1.6	6
237	Crust breakage in production of fine particles using pulse combustion drying: Experimental and numerical investigations. Powder Technology, 2021, 393, 77-98.	2.1	6
238	M7 WÃ ¤ neleitung und Dispersion in durchströmten Schüttungen. , 2013, , 1517-1534.		6
239	Prediction of particle mixing time in a rotary drum by 2D DEM simulations and cross-correlation. Advanced Powder Technology, 2022, 33, 103512.	2.0	6
240	44. WÄ ¤ metransport und chemische Reaktion in durchstrĶmten Festbetten - Eine Neuevaluierung. Chemie-Ingenieur-Technik, 1998, 70, 1094-1094.	0.4	5
241	Packed-Bed Membrane Reactors. , 0, , 99-148.		5
242	Stochastic Modelling of Particle Coating in Fluidized Beds. Procedia Engineering, 2015, 102, 996-1005.	1.2	5
243	Modeling of layering growth processes using a Monte Carlo approach. IFAC-PapersOnLine, 2015, 48, 99-104.	0.5	5
244	Experimental benchmarking of diffusion and reduced models for convective drying of single rice grains. Drying Technology, 2020, 38, 200-210.	1.7	5
245	Mass transport in a partially filled horizontal drum: Modelling and experiments. Chemical Engineering Science, 2020, 214, 115448.	1.9	5
246	Determination of 3D pore network structure of freeze-dried maltodextrin. Drying Technology, 2022, 40, 748-766.	1.7	5
247	Pore-Scale Modelling of Transport Phenomena in Drying. , 2008, , 187-204.		5
248	Low péclet number transient heat transfer in packed beds: re-evaluation of the data of Donnadieu. Chemical Engineering Science, 1993, 48, 3434-3437.	1.9	4
249	Ein neues, schnelles Meßverfahrenfür Sorptionsisothermen — Anwendung auf Aktivtonerde. Chemie-Ingenieur-Technik, 2000, 72, 88-94.	0.4	4
250	Mass Transport in Multilayer Porous Metallic Membranes – Diagnosis, Identification and Validation. Chemical Engineering and Technology, 2009, 32, 632-640.	0.9	4
251	Packed-Bed Membrane Reactors. , 2010, , 133-165.		4
252	Drying of thin porous disks from pore network simulations. Drying Technology, 2018, 36, 651-663.	1.7	4

#	Article	IF	CITATIONS
253	Wämeleitung und Dispersion in durchströmten Schüttungen. Springer Reference Technik, 2018, , 1-20.	0.0	4
254	Characterization of Lyophilization of Frozen Bulky Solids. Chemical Engineering and Technology, 2020, 43, 789-796.	0.9	4
255	Porosity and pore size distribution of beds composed by sugarcane bagasse and wheat bran for solid-state cultivation. Powder Technology, 2021, 386, 166-175.	2.1	4
256	Capillary instability induced gas-liquid displacement in porous media: Experimental observation and pore network model. Physical Review Fluids, 2020, 5, .	1.0	4
257	WÃ ¤ meübertragung zwischen einer Wand und dispersen Gas/Feststoff-Systemen. Chemie-Ingenieur-Technik, 1989, 61, 677-686.	0.4	3
258	Comment on studies on axial disperation in fixed beds. Chemical Engineering and Processing: Process Intensification, 1994, 33, 107-111.	1.8	3
259	Experimental Investigation of Continuous Fluidized Bed Spray Granulation with Internal Classification. Procedia Engineering, 2015, 102, 565-574.	1.2	3
260	Increasing self-sufficiency in a micro grid: integrated vs. non-integrated energy system approach. , 2018, , .		3
261	Study on film effects during isothermal drying of square capillary tube using Lattice Boltzmann method. Drying Technology, 2022, 40, 735-747.	1.7	3
262	M6 Heat Transfer from a Wall to Stagnant and Mechanically Agitated Beds. , 2010, , 1311-1326.		3
263	Pore network model of primary freeze drying. , 0, , .		3
264	Modern modelling methods in drying. , 2006, , 103-120.		3
265	Intensification of spray drying granulation process by gas absorption accompanied by chemical dissociation reactions. Chemical Engineering Journal, 2022, 433, 133566.	6.6	3
266	Morphological descriptors of agglomerates produced in continuously operated spray fluidized beds. Powder Technology, 2022, 397, 117111.	2.1	3
267	Proposal for extraction of pore networks with pores of high aspect ratios. Physical Review Fluids, 2022, 7, .	1.0	3
268	Droplet drying and whey protein denaturation in pulsed gas flow - A modeling study. Journal of Food Engineering, 2022, 321, 110959.	2.7	3
269	Pore network modeling of phase distribution and capillary force evolution during slow drying of particle aggregates. Powder Technology, 2022, 407, 117627.	2.1	3
270	Strömungsungleichverteilung und axiale Dispersion in Festbetten. Chemie-Ingenieur-Technik, 1989, 61, 243-246.	0.4	2

#	Article	IF	CITATIONS
271	Remarks on the paper "Experimental determination of transverse mixing kinetics in a rolling drum by image analysis―by D.R. van Puyvelde, B.R. Young, M.A. Wilson and S.J. Smith (Powder Technology 106) Tj ETQq1	⊉.0.7 843∶	1⋬ rgBT /Ov
272	The influence of confining walls on the pressure drop in packed beds. Chemical Engineering Science, 2002, 57, 1827.	1.9	2
273	New Developments in Drying. Chemical Engineering and Technology, 2011, 34, 1023-1023.	0.9	2
274	Bifurcation analysis of process stability of continuous fluidized bed agglomeration with external product classification. Computer Aided Chemical Engineering, 2016, , 1881-1886.	0.3	2
275	Agglomeration. , 2016, , 73-81.		2
276	Inductive heating of fluidized beds: Mobile versus stationary heat exchange elements. Drying Technology, 2019, 37, 652-663.	1.7	2
277	Inâ€depth investigation of incremental layer buildâ€up from dried deposited droplets. AICHE Journal, 2022, 68, e17445.	1.8	2
278	Dynamic Modelling of Particle Formulation in Horizontal Fluidized Beds. Computer Aided Chemical Engineering, 2014, 33, 1765-1770.	0.3	2
279	Influence of the Multilayer Nature of a Composite Membrane on Mass Transfer. Journal of Porous Media, 2009, 12, 749-757.	1.0	2
280	Two-equation continuum model of drying appraised by comparison with pore network simulations. International Journal of Heat and Mass Transfer, 2022, 194, 123073.	2.5	2
281	Title is missing!. Chemical Engineering and Processing: Process Intensification, 1988, 24, 177-179.	1.8	1
282	Discrete Investigation of Thermal Relaxation in Packed Beds. , 2010, , .		1
283	Front Matter, Volume 3: Product Quality and Formulation. , 2014, , I-XXXV.		1
284	Index, Volume 5: Process Intensification. , 2014, , 357-372.		1
285	WĤmeļbergangsuntersuchung in einer induktiv beheizten Wirbelschicht mit heterogener Schichtzusammensetzung. Chemie-Ingenieur-Technik, 2017, 89, 772-784.	0.4	1
286	WĤmeleitfĤigkeit von Schüttschichten. Springer Reference Technik, 2018, , 1-13.	0.0	1
287	A comparison between the use of continuous and pore network approach in the simulation of the drying process of porous media with different pore size distributions. Vietnam Journal of Chemistry, 2018, 56, 564-569.	0.7	1
288	M6 Wämeübergang von einer Heizflähe an ruhende oder mechanisch durchmischte Schüttungen. , 2013, , 1499-1516.		1

#	Article	IF	CITATIONS
289	Experimental investigation on pore size distribution and drying kinetics during lyophilization of sugar solutions. , 0, , .		1
290	M7 WÃ ¤ meleitung und Dispersion in durchströmten Schüttungen. Springer Reference Technik, 2019, , 1753-1772.	0.0	1
291	Die Kontakttrocknung rieselfĤigen, polydispersen Granulats im Vakuum. Chemie-Ingenieur-Technik, 1984, 56, 844-846.	0.4	0
292	44. Regelung von Wirbelschichttrocknern auf der Basis eines physikalisch begründeten ProzeÄYmodells. Chemie-Ingenieur-Technik, 1999, 71, 962-963.	0.4	0
293	Verbesserung des Stofftransports durch Mikrokonvektion: Experimenteller Zugang, Quantifizierung und erste AnsĤze zur Korrelation. Chemie-Ingenieur-Technik, 2000, 72, 1025-1025.	0.4	0
294	Akustischer Levitator als Instrument zur Untersuchung kinetisch kontrollierter Trennprozesse an Tropfen oder Partikeln. Chemie-Ingenieur-Technik, 2000, 72, 1095-1095.	0.4	0
295	Waschen poröser Körper bei Mischbarkeit zwischen Beladungs- und Waschflüssigkeit. Chemie-Ingenieur-Technik, 2000, 72, 1096-1097.	0.4	0
296	Miscible Displacement and Diffusion during the Removal of Undesired Liquids from Porous Bodies by Washing. Chemie-Ingenieur-Technik, 2001, 73, 724-724.	0.4	0
297	Microconvection During Pervaporation of a Binary Liquid Mixture from Planar Gaps or Packed Layers. Chemie-Ingenieur-Technik, 2001, 73, 727-727.	0.4	0
298	Moisture Migration in Stored Granular Materials. , 2010, , .		0
299	Stochastic Modeling of Particle Formation in Fluidized Beds. Chemie-Ingenieur-Technik, 2011, 83, 665-671.	0.4	0
300	Guest Editorial: 17th International Drying Symposium (IDS2010). Drying Technology, 2011, 29, 1481-1483.	1.7	0
301	Guest Editorial: 17th International Drying Symposium (IDS2010). Drying Technology, 2011, 29, 1855-1857.	1.7	0
302	Guest Editorial: Special Issue to Commemorate 30 Years of <i>Drying Technology</i> . Drying Technology, 2012, 30, 1125-1126.	1.7	0
303	Emissionen von Automobillackieranlagen - Ökobilanzielle Betrachtung der thermischen Nachverbrennung im Unterbodenschutz. Chemie-Ingenieur-Technik, 2013, 85, n/a-n/a.	0.4	0
304	Index, Volume 3: Product Quality and Formulation. , 2014, , 379-394.		0
305	Experimentelle Analyse der Mikrostrukturbildung am Einzelpartikel und Mikrotropfen. Chemie-Ingenieur-Technik, 2014, 86, 1552-1552.	0.4	0

306 Front Matter, Volume 2: Experimental Techniques. , 2014, , I-XXXVII.

#	Article	IF	CITATIONS
307	Front Matter, Volume 1: Computational Tools at Different Scales. , 2014, , I-XXXVII.		Ο
308	Front Matter, Volume 4: Energy Savings. , 2014, , I-XXXIII.		0
309	Index, Volume 4: Energy Savings. , 2014, , 331-342.		0
310	Modellbasierte Regelung der PartikelgrĶğenverteilung in der kontinuierlichen Wirbelschicht-SprA¼hgranulation. Chemie-Ingenieur-Technik, 2014, 86, 725-733.	0.4	0
311	Front Matter, Volume 5: Process Intensification. , 2014, , I-XXXIII.		0
312	Index, Volume 2: Experimental Techniques. , 2014, , 363-374.		0
313	Index, Volume 1: Computational Tools at Different Scales. , 2014, , 307-320.		0
314	Wämeübergang in Wirbelschichten. Springer Reference Technik, 2018, , 1-12.	0.0	0
315	Wämeübergang von einer Heizflähe an ruhende oder mechanisch durchmischte Schüttungen. Springer Reference Technik, 2018, , 1-21.	0.0	0
316	Multi-stage and multi-compartment model for dynamic simulation of horizontal fluidized bed granulator. Drying Technology, 2021, 39, 203-218.	1.7	0
317	The Role of Discrete Capillary Rings in Mass Transfer From the Surface of a Drying Capillary Porous Medium. Transport in Porous Media, 0, , 1.	1.2	0
318	General Analysis of Isobaric Diffusion in Composite Ceramic Membranes with Inclusion of Axial Dispersion Coefficient. Journal of Porous Media, 2009, 12, 955-966.	1.0	0
319	Liquid Distribution and Structural Changes During Convective Drying of Gels. , 2015, , 93-112.		0
320	Selected Peer-Reviewed Articles from the 1st International Conference on Chemical Process and Product Engineering 2016 (ICCPPE 2016), Semarang, Indonesia, 14–15 September, 2016. Advanced Science Letters, 2017, 23, 5587-5589.	0.2	0
321	Measurement and Modeling of Drying Kinetics of PVC Powder. Advanced Science Letters, 2017, 23, 5663-5665.	0.2	0
322	Dependency of continuum model parameters on the spatially correlated pore structure studied by pore-network drying simulations. , 0, , .		0
323	CFD model-supported design of monodisperse co-current spray dryers. , 0, , .		0
324	Multi-zone & multi-compartment model for dynamic simulation of horizontal fluidized bed granulator. , 0, , .		0

#	Article	IF	CITATIONS
325	Discrete modeling of ion transport and crystallization in layered porous media during drying. , 0, , .		0
326	A pore-scale study on the drying kinetics and mechanical behavior of particle aggregates. , 0, , .		0
327	Heat and mass transfer modelling of continuous Wurster-spray-granulation with external product classification. , 0, , .		0
328	Investigation of spray agglomeration process in continuously operated horizontal fluidized bed. , 0, , .		0
329	Investigation of 3D particle flow in a flighted rotating drum. , 0, , .		0
330	Influence of drying conditions on process properties and parameter identification for continuous fluidized bed spray agglomeration. , 0, , .		0
331	M5 WĀĦme¼bergang in Wirbelschichten. Springer Reference Technik, 2019, , 1719-1730.	0.0	0
332	M11 Wäneleitfäigkeit von Schüttschichten. Springer Reference Technik, 2019, , 1831-1843.	0.0	0
333	M6 WÃ ¤ meübergang von einer HeizflÃ ¤ he an ruhende oder mechanisch durchmischte Schüttungen. Springer Reference Technik, 2019, , 1731-1751.	0.0	0
334	Dynamics of Spray Granulation inÂContinuously Operated Horizontal Fluidized Beds. , 2020, , 67-107.		0
335	A Note on Sectional and Finite Volume Methods for Solving Population Balance Equations. , 2008, , 285-297		0