
David M Richardson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 2000, 6, 93-107.	1.9	2,724
2	A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 2011, 26, 333-339.	4.2	1,762
3	Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 2006, 15, 1-7.	2.7	1,528
4	What Attributes Make Some Plant Species More Invasive?. Ecology, 1996, 77, 1655-1661.	1.5	1,414
5	Effects of Invasive Alien Plants on Fire Regimes. BioScience, 2004, 54, 677.	2.2	1,193
6	Plant invasions – the role of mutualisms. Biological Reviews, 2000, 75, 65-93.	4.7	1,092
7	Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon, 2004, 53, 131-143.	0.4	978
8	Invasive Species, Environmental Change and Management, and Health. Annual Review of Environment and Resources, 2010, 35, 25-55.	5.6	936
9	Scientists' warning on invasive alien species. Biological Reviews, 2020, 95, 1511-1534.	4.7	928
10	Plant invasions: merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography, 2006, 30, 409-431.	1.4	883
11	Trees and shrubs as invasive alien species – a global review. Diversity and Distributions, 2011, 17, 788-809.	1.9	844
12	Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 2005, 11, 2234-2250.	4.2	742
13	Adaptive evolution in invasive species. Trends in Plant Science, 2008, 13, 288-294.	4.3	724
14	The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany, 2012, 109, 19-45.	1.4	707
15	Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diversity and Distributions, 2007, 13, 126-139.	1.9	685
16	Something in the way you move: dispersal pathways affect invasion success. Trends in Ecology and Evolution, 2009, 24, 136-144.	4.2	680
17	A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biology, 2014, 12, e1001850.	2.6	648
18	Biological invasions as disruptors of plant reproductive mutualisms. Trends in Ecology and Evolution, 2006, 21, 208-216.	4.2	622

#	Article	IF	CITATIONS
19	Traits Associated with Invasiveness in Alien Plants: Where Do we Stand?. , 2008, , 97-125.		615
20	Geographical and taxonomic biases in invasion ecology. Trends in Ecology and Evolution, 2008, 23, 237-244.	4.2	610
21	Determinants of Plant Distribution: Evidence from Pine Invasions. American Naturalist, 1991, 137, 639-668.	1.0	496
22	Predicting Plant Migration Rates in a Changing World: The Role of Longâ€Distance Dispersal. American Naturalist, 1999, 153, 464-475.	1.0	493
23	Mapping ecosystem services for planning and management. Agriculture, Ecosystems and Environment, 2008, 127, 135-140.	2.5	461
24	The importance of long-distance dispersal in biodiversity conservation. Diversity and Distributions, 2005, 11, 173-181.	1.9	428
25	Managing the whole landscape: historical, hybrid, and novel ecosystems. Frontiers in Ecology and the Environment, 2014, 12, 557-564.	1.9	378
26	Forestry Trees as Invasive Aliens. Conservation Biology, 1998, 12, 18-26.	2.4	371
27	Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Progress in Physical Geography, 2009, 33, 319-338.	1.4	370
28	Multidimensional evaluation of managed relocation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9721-9724.	3.3	339
29	Pine Invasions in the Southern Hemisphere: Determinants of Spread and Invadability. Journal of Biogeography, 1994, 21, 511.	1.4	328
30	Mutualistic Interactions and Biological Invasions. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 89-113.	3.8	324
31	Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytologist, 2012, 196, 383-396.	3.5	318
32	Impacts of invasive Australian acacias: implications for management and restoration. Diversity and Distributions, 2011, 17, 1015-1029.	1.9	316
33	Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology and Evolution, 2017, 32, 464-474.	4.2	312
34	Conifers as invasive aliens: a global survey and predictive framework. Diversity and Distributions, 2004, 10, 321-331.	1.9	308
35	Defining the Impact of Nonâ€Native Species. Conservation Biology, 2014, 28, 1188-1194.	2.4	308
36	Ecological Impacts of Alien Species: Quantification, Scope, Caveats, and Recommendations. BioScience, 2015, 65, 55-63.	2.2	301

#	Article	IF	CITATIONS
37	Residence time and potential range: crucial considerations in modelling plant invasions. Diversity and Distributions, 2007, 13, 11-22.	1.9	295
38	The invasive potential of Australian banksias in South African fynbos: A comparison of the reproductive potential of Banksia ericifolia and Leucadendron laureolum. Austral Ecology, 1992, 17, 305-314.	0.7	290
39	Trees and shrubs as invasive alien species – 2013 update of the global database. Diversity and Distributions, 2013, 19, 1093-1094.	1.9	281
40	Inferring Process from Pattern in Plant Invasions: A Semimechanistic Model Incorporating Propagule Pressure and Environmental Factors. American Naturalist, 2003, 162, 713-724.	1.0	275
41	INTERACTIONS BETWEEN ENVIRONMENT, SPECIES TRAITS, AND HUMAN USES DESCRIBE PATTERNS OF PLANT INVASIONS. Ecology, 2006, 87, 1755-1769.	1.5	272
42	Ecosystem Level Impacts of Invasive Acacia saligna in the South African Fynbos. Restoration Ecology, 2004, 12, 44-51.	1.4	262
43	Fifty years of invasion ecology – the legacy of Charles Elton. Diversity and Distributions, 2008, 14, 161-168.	1.9	254
44	Humanâ€nediated introductions of Australian acacias – a global experiment in biogeography. Diversity and Distributions, 2011, 17, 771-787.	1.9	245
45	Socioâ€economic impact classification of alien taxa (<scp>SEICAT</scp>). Methods in Ecology and Evolution, 2018, 9, 159-168.	2.2	244
46	TEASIng apart alien species risk assessments: a framework for best practices. Ecology Letters, 2012, 15, 1475-1493.	3.0	241
47	Spatial congruence between biodiversity and ecosystem services in South Africa. Biological Conservation, 2009, 142, 553-562.	1.9	240
48	Current patterns of habitat transformation and future threats to biodiversity in terrestrial ecosystems of the Cape Floristic Region, South Africa. Biological Conservation, 2003, 112, 63-85.	1.9	232
49	Conflicting values: ecosystem services and invasive tree management. Biological Invasions, 2014, 16, 705-719.	1.2	230
50	Spread and impact of introduced conifers in South America: Lessons from other southern hemisphere regions. Austral Ecology, 2010, 35, 489-504.	0.7	224
51	Deliberate Introductions of Species: Research Needs. BioScience, 1999, 49, 619-630.	2.2	223
52	Predicting the Landscape-Scale Distribution of Alien Plants and Their Threat to Plant Diversity. Conservation Biology, 1999, 13, 303-313.	2.4	220
53	Integrative invasion science: model systems, multiâ€site studies, focused metaâ€analysis and invasion syndromes. New Phytologist, 2013, 200, 615-633.	3.5	219
54	Invasive plants as drivers of regime shifts: identifying highâ€priority invaders that alter feedback relationships. Diversity and Distributions, 2014, 20, 733-744.	1.9	214

#	Article	IF	CITATIONS
55	Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biological Invasions, 2014, 16, 735-753.	1.2	214
56	Managed Relocation: Integrating the Scientific, Regulatory, and Ethical Challenges. BioScience, 2012, 62, 732-743.	2.2	212
57	Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Global Change Biology, 2012, 18, 44-62.	4.2	212
58	Crossing Frontiers in Tackling Pathways of Biological Invasions. BioScience, 2015, 65, 769-782.	2.2	202
59	The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biological Conservation, 2006, 132, 183-198.	1.9	198
60	A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa. Journal of Environmental Management, 2008, 89, 336-349.	3.8	197
61	Non-natives: 141 scientists object. Nature, 2011, 475, 36-36.	13.7	197
62	The biogeography of naturalization in alien plants. Journal of Biogeography, 2006, 33, 2040-2050.	1.4	196
63	Fungal Planet description sheets: 400–468. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2016, 36, 316-458.	1.6	193
64	Modeling Invasive Plant Spread: The Role of Plant-Environment Interactions and Model Structure. Ecology, 1996, 77, 2043-2054.	1.5	191
65	Non-native species in urban environments: patterns, processes, impacts and challenges. Biological Invasions, 2017, 19, 3461-3469.	1.2	190
66	Seed banks of invasive Australian Acacia species in South Africa: Role in invasiveness and options for management. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10, 161-177.	1.1	184
67	Framework and guidelines for implementing the proposed <scp>IUCN</scp> Environmental Impact Classification for Alien Taxa (<scp>EICAT</scp>). Diversity and Distributions, 2015, 21, 1360-1363.	1.9	184
68	Explaining people's perceptions of invasive alien species: A conceptual framework. Journal of Environmental Management, 2019, 229, 10-26.	3.8	184
69	Integrating ecosystem services and disservices: insights from plant invasions. Ecosystem Services, 2017, 23, 94-107.	2.3	179
70	Global grass (<scp>P</scp> oaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biological Reviews, 2018, 93, 1125-1144.	4.7	178
71	Adoption, use and perception of Australian acacias around the world. Diversity and Distributions, 2011, 17, 822-836.	1.9	176
72	Conservation biogeography – foundations, concepts and challenges. Diversity and Distributions, 2010, 16, 313-320.	1.9	175

#	Article	IF	CITATIONS
73	Challenges and trade-offs in the management of invasive alien trees. Biological Invasions, 2014, 16, 721-734.	1.2	171
74	Prosopis: a global assessment of the biogeography, benefits, impacts and management of one of the world's worst woody invasive plant taxa. AoB PLANTS, 2014, 6, .	1.2	169
75	A review of models of alien plant spread. Ecological Modelling, 1996, 87, 249-265.	1.2	166
76	Plant invasions â \in " the role of mutualisms. Biological Reviews, 2000, 75, 65-93.	4.7	165
77	Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions. Diversity and Distributions, 2011, 17, 1030-1046.	1.9	165
78	Mapping the potential ranges of major plant invaders in South Africa, Lesotho and Swaziland using climatic suitability. Diversity and Distributions, 2004, 10, 475-484.	1.9	163
79	Invasion debt – quantifying future biological invasions. Diversity and Distributions, 2016, 22, 445-456.	1.9	160
80	Global effects of nonâ€native tree species on multiple ecosystem services. Biological Reviews, 2019, 94, 1477-1501.	4.7	158
81	Nationalâ€scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Diversity and Distributions, 2011, 17, 1060-1075.	1.9	157
82	The Effects of Alien Shrub Invasions on Vegetation Structure and Fire Behaviour in South African Fynbos Shrublands: A Simulation Study. Journal of Applied Ecology, 1985, 22, 955.	1.9	155
83	Title is missing!. , 1998, 135, 79-93.		154
84	USING A DYNAMIC LANDSCAPE MODEL FOR PLANNING THE MANAGEMENT OF ALIEN PLANT INVASIONS. , 2000, 10, 1833-1848.		154
85	Ornamental Plants as Invasive Aliens: Problems and Solutions in Kruger National Park, South Africa. Environmental Management, 2008, 41, 32-51.	1.2	153
86	Which Taxa Are Alien? Criteria, Applications, and Uncertainties. BioScience, 2018, 68, 496-509.	2.2	153
87	Management of plant invasions mediated by frugivore interactions. Journal of Applied Ecology, 2006, 43, 848-857.	1.9	151
88	Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Diversity and Distributions, 2004, 10, 179-187.	1.9	149
89	Reproductive biology of Australian acacias: important mediator of invasiveness?. Diversity and Distributions, 2011, 17, 911-933.	1.9	148
90	Drivers of future alien species impacts: An expertâ€based assessment. Global Change Biology, 2020, 26, 4880-4893.	4.2	145

#	Article	IF	CITATIONS
91	Title is missing!. Environment, Development and Sustainability, 2001, 3, 145-168.	2.7	143
92	Identifying priority areas for ecosystem service management in South African grasslands. Journal of Environmental Management, 2011, 92, 1642-1650.	3.8	142
93	Misleading criticisms of invasion science: a field guide. Diversity and Distributions, 2013, 19, 1461-1467.	1.9	141
94	A framework for engaging stakeholders on the management of alien species. Journal of Environmental Management, 2018, 205, 286-297.	3.8	141
95	Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nature Communications, 2018, 9, 4631.	5.8	139
96	Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biological Invasions, 2016, 18, 921-933.	1.2	134
97	Stakeholder engagement in the study and management of invasive alien species. Journal of Environmental Management, 2019, 229, 88-101.	3.8	134
98	Fungal Planet description sheets: 371–399. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2015, 35, 264-327.	1.6	133
99	Tree invasions: patterns, processes, challenges and opportunities. Biological Invasions, 2014, 16, 473-481.	1.2	132
100	Identifying spatial components of ecological and evolutionary processes for regional conservation planning in the Cape Floristic Region, South Africa. Diversity and Distributions, 2003, 9, 191-210.	1.9	130
101	Tree invasions into treeless areas: mechanisms and ecosystem processes. Biological Invasions, 2014, 16, 663-675.	1.2	130
102	Existing and emerging high impact invasive species are characterized by higher functional responses than natives. Biology Letters, 2014, 10, 20130946.	1.0	130
103	An Assessment of Habitat Diversity and Transformation on La Réunion Island (Mascarene Islands,) Tj ETQq1 1 Conservation, 2005, 14, 3015-3032.	0.784314 1.2	rgBT /Overlo 129
104	Introduced and invasive cactus species: a global review. AoB PLANTS, 2015, 7, .	1.2	129
105	Plant invasion science in protected areas: progress and priorities. Biological Invasions, 2017, 19, 1353-1378.	1.2	129
106	Riparian scrub recovery after clearing of invasive alien trees in headwater streams of the Western Cape, South Africa. Biological Conservation, 2005, 122, 509-521.	1.9	128
107	Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 220-225.	3.3	128
108	Speciesâ€based risk assessments for biological invasions: advances and challenges. Diversity and Distributions, 2013, 19, 1095-1105.	1.9	128

#	Article	IF	CITATIONS
109	Assessing the risk of invasive success inPinusandBanksiain South African mountain fynbos. Journal of Vegetation Science, 1990, 1, 629-642.	1.1	127
110	Defining invasiveness and invasibility in ecological networks. Biological Invasions, 2016, 18, 971-983.	1.2	121
111	Planted forests and invasive alien trees in Europe: A Code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota, 0, 30, 5-47.	1.0	121
112	The progress of interdisciplinarity in invasion science. Ambio, 2017, 46, 428-442.	2.8	120
113	The current configuration of protected areas in the Cape Floristic Region, South Africa—reservation bias and representation of biodiversity patterns and processes. Biological Conservation, 2003, 112, 129-145.	1.9	119
114	Protocols for Restoration Based on Recruitment Dynamics, Community Structure, and Ecosystem Function: Perspectives from South African Fynbos. Restoration Ecology, 1999, 7, 215-230.	1.4	118
115	Home away from home — objective mapping of highâ€risk source areas for plant introductions. Diversity and Distributions, 2007, 13, 299-312.	1.9	115
116	Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200Âyears. Biological Invasions, 2016, 18, 907-920.	1.2	114
117	Confronting the wicked problem of managing biological invasions. NeoBiota, 0, 31, 63-86.	1.0	114
118	Potential impacts of future land use and climate change on the Red List status of the Proteaceae in the Cape Floristic Region, South Africa. Global Change Biology, 2005, 11, 1452-1468.	4.2	113
119	A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience, 2019, 69, 908-919.	2.2	113
120	Managing conflict-generating invasive species in South Africa: Challenges and trade-offs. Bothalia, 2017, 47, .	0.2	113
121	Will Climate Change Promote Alien Plant Invasions?. , 2008, , 197-211.		112
122	Invasion trajectory of alien trees: the role of introduction pathway and planting history. Global Change Biology, 2014, 20, 1527-1537.	4.2	112
123	Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Diversity and Distributions, 2015, 21, 534-547.	1.9	112
124	Recovery of South African fynbos vegetation following alien woody plant clearing and fire: implications for restoration. Austral Ecology, 2000, 25, 631-639.	0.7	108
125	Three centuries of managing introduced conifers in South Africa: Benefits, impacts, changing perceptions and conflict resolution. Journal of Environmental Management, 2012, 106, 56-68.	3.8	108
126	Ecology and management of invasive Pinaceae around the world: progress and challenges. Biological Invasions, 2017, 19, 3099-3120.	1.2	107

#	Article	IF	CITATIONS
127	Fragmentation of South African renosterveld shrublands: effects on plant community structure and conservation implications. Biological Conservation, 1999, 90, 103-111.	1.9	104
128	Forestry Trees as Invasive Aliens. Conservation Biology, 1998, 12, 18-26.	2.4	103
129	Ecology and management of alien plant invasions in South African fynbos: Accommodating key complexities in objective decision making. Biological Conservation, 2009, 142, 1595-1604.	1.9	103
130	Invasive plants have broader physiological niches. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10610-10614.	3.3	99
131	Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2021, 29, 119-141.	2.1	98
132	Managing invasive species in cities: A framework from Cape Town, South Africa. Landscape and Urban Planning, 2016, 151, 1-9.	3.4	97
133	Current and future threats to plant biodiversity on the Cape Peninsula, South Africa. Biodiversity and Conservation, 1996, 5, 607-647.	1.2	96
134	Reconstructing 50Âyears of Opuntia stricta invasion in the Kruger National Park, South Africa: environmental determinants and propagule pressure. Diversity and Distributions, 2004, 10, 427-437.	1.9	96
135	Predicting invasiveness of Australian acacias on the basis of their native climatic affinities, life history traits and human use. Diversity and Distributions, 2011, 17, 934-945.	1.9	96
136	Alien plant invasions and native plant extinctions: a six-threshold framework. AoB PLANTS, 2016, 8, .	1.2	95
137	The evolution and phylogenetic placement of invasive Australian <i>Acacia</i> species. Diversity and Distributions, 2011, 17, 848-860.	1.9	94
138	Perceptions of impact: Invasive alien plants in the urban environment. Journal of Environmental Management, 2019, 229, 76-87.	3.8	94
139	Reductions in Plant Species Richness under Stands of Alien Trees and Shrubs in the Fynbos Biome. South African Forestry Journal, 1989, 149, 1-8.	0.2	93
140	Searching for phylogenetic pattern in biological invasions. Global Ecology and Biogeography, 2007, 17, 070909153804002-???.	2.7	93
141	Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects. Biological Invasions, 2010, 12, 3913-3933.	1.2	93
142	Delayed biodiversity change: no time to waste. Trends in Ecology and Evolution, 2015, 30, 375-378.	4.2	92
143	Title is missing!. Plant Ecology, 2001, 152, 79-92.	0.7	91
144	Invasion of mesic mountain fynbos by Pinus radiata. South African Journal of Botany, 1986, 52, 529-536.	1.2	90

#	Article	IF	CITATIONS
145	Validation of a spatial simulation model of a spreading alien plant population. Journal of Applied Ecology, 2001, 38, 571-584.	1.9	90
146	Protected-Area Boundaries as Filters of Plant Invasions. Conservation Biology, 2010, 25, no-no.	2.4	88
147	Flowering phenology of invasive alien plant species compared with native species in three Mediterranean-type ecosystems. Annals of Botany, 2009, 103, 485-494.	1.4	87
148	Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB PLANTS, 2013, 5, plt042-plt042.	1.2	87
149	Human Impacts in Pine Forests: Past, Present, and Future. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 275-297.	3.8	85
150	Risk Assessment of Riparian Plant Invasions into Protected Areas. Conservation Biology, 2007, 21, 412-421.	2.4	85
151	Different Traits Determine Introduction, Naturalization and Invasion Success In Woody Plants: Proteaceae as a Test Case. PLoS ONE, 2013, 8, e75078.	1.1	85
152	New pasture plants intensify invasive species risk. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16622-16627.	3.3	85
153	Plant Invasions in Protected Areas. , 2013, , .		83
154	Alien plants as mediators of ecosystem services and disservices in urban systems: a global review. Biological Invasions, 2017, 19, 3571-3588.	1.2	83
155	Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biological Invasions, 2020, 22, 1801-1820.	1.2	83
156	Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management. Royal Society Open Science, 2019, 6, 181577.	1.1	82
157	An expert system for screening potentially invasive alien plants in South African fynbos. Journal of Environmental Management, 1995, 44, 309-338.	3.8	81
158	Alien conifer invasions in South America: short fuse burning?. Biological Invasions, 2008, 10, 573-577.	1.2	81
159	Coâ€invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. Journal of Biogeography, 2013, 40, 1240-1251.	1.4	81
160	Functional Group Identity Does not Predict Invader Impacts: Differential Effects of Nitrogen-fixing Exotic Plants on Ecosystem Function. Biological Invasions, 2007, 9, 117-125.	1.2	80
161	Phylogeographic consequences of different introduction histories of invasive Australian <i>Acacia</i> species and <i>Paraserianthes lophantha</i> (Fabaceae) in South Africa. Diversity and Distributions, 2011, 17, 861-871.	1.9	79
162	A river runs through it: Land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biological Conservation, 2010, 143, 156-164.	1.9	77

#	Article	IF	CITATIONS
163	Colonization of Cape fynbos communities by forest species. Forest Ecology and Management, 1992, 48, 277-293.	1.4	75
164	Australian acacias as invasive species: lessons to be learnt from regions with long planting histories. Southern Forests, 2015, 77, 31-39.	0.2	75
165	Invasion dynamics of Lantana camara L. (sensu lato) in South Africa. South African Journal of Botany, 2012, 81, 81-94.	1.2	74
166	Invasive alien plants infiltrate bird-mediated shrub nucleation processes in arid savanna. Journal of Ecology, 2007, 95, 648-661.	1.9	73
167	The human and social dimensions of invasion science and management. Journal of Environmental Management, 2019, 229, 1-9.	3.8	73
168	Aspects of the reproductive ecology of four australian Hakea species (Proteaceae) in South Africa. Oecologia, 1987, 71, 345-354.	0.9	72
169	Species richness of alien plants in South Africa: Environmental correlates and the relationship with indigenous plant species richness. Ecoscience, 2005, 12, 391-402.	0.6	72
170	Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota, 0, 61, 65-116.	1.0	72
171	Widespread plant species: natives versus aliens in our changing world. Biological Invasions, 2011, 13, 1931-1944.	1.2	70
172	Native and naturalized range size in <i>Pinus</i> : relative importance of biogeography, introduction effort and species traits. Global Ecology and Biogeography, 2012, 21, 513-523.	2.7	70
173	Current distribution and potential extent of the most invasive alien plant species on La Reunion (Indian Ocean, Mascarene islands). Austral Ecology, 2006, 31, 747-758.	0.7	69
174	Guidelines for improved management of riparian zones invaded by alien plants in South Africa. South African Journal of Botany, 2008, 74, 538-552.	1.2	69
175	The global distribution of bamboos: assessing correlates of introduction and invasion. AoB PLANTS, 2016, , plw078.	1.2	69
176	The impact of invasive alien Prosopis species (mesquite) on native plants in different environments in South Africa. South African Journal of Botany, 2015, 97, 25-31.	1.2	67
177	Beyond climate: disturbance niche shifts in invasive species. Global Ecology and Biogeography, 2015, 24, 360-370.	2.7	67
178	Safeguarding Biodiversity and Ecosystem Services in the Little Karoo, South Africa. Conservation Biology, 2010, 24, 1021-1030.	2.4	66
179	Predicting the subspecific identity of invasive species using distribution models: <i>Acacia saligna</i> as an example. Diversity and Distributions, 2011, 17, 1001-1014.	1.9	66
180	Unlocking the potential of Google Earth as a tool in invasion science. Biological Invasions, 2014, 16, 513-534.	1.2	66

#	Article	IF	CITATIONS
181	MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota, 0, 62, 407-461.	1.0	66
182	Stakeholder perceptions and practices regarding Prosopis (mesquite) invasions and management in South Africa. Ambio, 2015, 44, 569-581.	2.8	65
183	Title is missing!. Biological Invasions, 2002, 4, 397-412.	1.2	64
184	Invasiveness in introduced Australian acacias: the role of species traits and genome size. Diversity and Distributions, 2011, 17, 884-897.	1.9	64
185	Can floral traits predict an invasive plant's impact on native plant–pollinator communities?. Journal of Ecology, 2012, 100, 1216-1223.	1.9	64
186	Eucalyptus invasions in riparian forests: Effects on native vegetation community diversity, stand structure and composition. Forest Ecology and Management, 2013, 297, 84-93.	1.4	64
187	Why Is Mountain Fynbos Invasible and Which Species Invade?. Ecological Studies, 1992, , 161-181.	0.4	64
188	Effects of Alien Plants on Ecosystem Structure and Functioning and Implications for Restoration: Insights from Three Degraded Sites in South African Fynbos. Environmental Management, 2011, 48, 57-69.	1.2	63
189	How to Invade an Ecological Network. Trends in Ecology and Evolution, 2019, 34, 121-131.	4.2	63
190	Macroecology meets invasion ecology: linking the native distributions of Australian acacias to invasiveness. Diversity and Distributions, 2011, 17, 872-883.	1.9	62
191	Can riparian seed banks initiate restoration after alien plant invasion? Evidence from the Western Cape, South Africa. South African Journal of Botany, 2008, 74, 432-444.	1.2	61
192	Invasion biology and conservation biology: time to join forces to explore the links between species traits and extinction risk and invasiveness. Progress in Physical Geography, 2007, 31, 447-450.	1.4	60
193	A standardized set of metrics to assess and monitor tree invasions. Biological Invasions, 2014, 16, 535-551.	1.2	60
194	Economic incentives for restoring natural capital in southern African rangelands. Frontiers in Ecology and the Environment, 2003, 1, 247-254.	1.9	59
195	Subjectivity and flexibility in invasion terminology: too much of a good thing?. Biological Invasions, 2009, 11, 1225-1229.	1.2	59
196	Resolving a Prickly Situation: Involving Stakeholders in Invasive Cactus Management in South Africa. Environmental Management, 2016, 57, 998-1008.	1.2	59
197	Patterns of alien plant distribution at multiple spatial scales in a large national park: implications for ecology, management and monitoring. Diversity and Distributions, 2009, 15, 367-378.	1.9	58
198	Soil quality: a key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br Biological Invasions, 2014, 16, 429-443.	1.2	58

#	Article	IF	CITATIONS
199	Small urban centres as launching sites for plant invasions in natural areas: insights from South Africa. Biological Invasions, 2017, 19, 3541-3555.	1.2	58
200	Acacia mangium Willd: benefits and threats associated with its increasing use around the world. Forest Ecosystems, 2019, 6, .	1.3	58
201	Determinants of distribution of six Pinus species in Catalonia, Spain. Journal of Vegetation Science, 2001, 12, 491-502.	1.1	54
202	The Roles of Climate, Phylogenetic Relatedness, Introduction Effort, and Reproductive Traits in the Establishment of Nonâ€Native Reptiles and Amphibians. Conservation Biology, 2012, 26, 267-277.	2.4	54
203	Evidence for shifts to faster growth strategies in the new ranges of invasive alien plants. Journal of Ecology, 2014, 102, 1451-1461.	1.9	54
204	Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Scientific Reports, 2017, 7, 6472.	1.6	54
205	The effectiveness of active and passive restoration on recovery of indigenous vegetation in riparian zones in the Western Cape, South Africa: A preliminary assessment. South African Journal of Botany, 2013, 88, 132-141.	1.2	53
206	Drivers, impacts, mechanisms and adaptation in insect invasions. Biological Invasions, 2016, 18, 883-891.	1.2	53
207	Indicators for monitoring biological invasions at a national level. Journal of Applied Ecology, 2018, 55, 2612-2620.	1.9	53
208	Spatiallyâ€explicit sensitivity analysis for conservation management: exploring the influence of decisions in invasive alien plant management. Diversity and Distributions, 2010, 16, 426-438.	1.9	52
209	Linking functional traits to impacts of invasive plant species: a case study. Plant Ecology, 2015, 216, 293-305.	0.7	52
210	Towards a national strategy to optimise the management of a widespread invasive tree (Prosopis) Tj ETQq0 0 0 0	rgBT /Ovei 2.3	rlock 10 Tf 50
211	Biodiversity assessments: Origin matters. PLoS Biology, 2018, 16, e2006686.	2.6	52
212	Social-ecological drivers and impacts of invasion-related regime shifts: consequences for ecosystem services and human wellbeing. Environmental Science and Policy, 2018, 89, 300-314.	2.4	50
213	A fourâ€component classification of uncertainties in biological invasions: implications for management. Ecosphere, 2019, 10, e02669.	1.0	50
214	Herbivores, but not other insects, are scarce on alien plants. Austral Ecology, 2008, 33, 691-700.	0.7	49
215	Accommodating scenarios of climate change and management in modelling the distribution of the invasive tree <i>Schinus molle</i> in South Africa. Ecography, 2010, 33, 1049-1061.	2.1	49
216	Relatedness defies biogeography: the tale of two island endemics (<i><scp>A</scp>cacia) Tj ETQq0 0 0 rgBT /O</i>	verlock 10) Tf 50 62 Td (

#	Article	IF	CITATIONS
217	Biological Invasions in South Africa: An Overview. , 2020, , 3-31.		49
218	The (bio)diversity of science reflects the interests of society. Frontiers in Ecology and the Environment, 2007, 5, 409-414.	1.9	48
219	Alien invaders and reptile traders: what drives the live animal trade in South Africa?. Animal Conservation, 2010, 13, 24-32.	1.5	47
220	Collaborative learning to unlock investments for functional ecological infrastructure: Bridging barriers in social-ecological systems in South Africa. Ecosystem Services, 2017, 27, 291-304.	2.3	47
221	Superiority in competition for light: A crucial attribute defining the impact of the invasive alien tree Schinus molle (Anacardiaceae) in South African savanna. Journal of Arid Environments, 2008, 72, 612-623.	1.2	46
222	Evaluating the invasiveness of Acacia paradoxa in South Africa. South African Journal of Botany, 2009, 75, 485-496.	1.2	46
223	The Functional Potential of the Rhizospheric Microbiome of an Invasive Tree Species, Acacia dealbata. Microbial Ecology, 2019, 77, 191-200.	1.4	46
224	Assessing biological invasions in protected areas after 30Âyears: Revisiting nature reserves targeted by the 1980s SCOPE programme. Biological Conservation, 2020, 243, 108424.	1.9	46
225	Landscape fragmentation in South Coast Renosterveld, South Africa, in relation to rainfall and topography. Austral Ecology, 2000, 25, 179-186.	0.7	45
226	A Quantitative Climate-Match Score for Risk-Assessment Screening of Reptile and Amphibian Introductions. Environmental Management, 2009, 44, 590-607.	1.2	45
227	Mediterranean-Type Ecosystems: Opportunities and Constraints for Studying the Function of Biodiversity. Ecological Studies, 1995, , 1-42.	0.4	45
228	The (bio)diversity of science reflects the interests of society. Frontiers in Ecology and the Environment, 2007, 5, 409.	1.9	45
229	Alien plant invasions—incorporating emerging invaders in regional prioritization: A pragmatic approach for Southern Africa. Journal of Environmental Management, 2007, 84, 173-187.	3.8	44
230	Dissecting the plant–insect diversity relationship in the Cape. Molecular Phylogenetics and Evolution, 2009, 51, 94-99.	1.2	44
231	Ecological research and conservation management in the Cape Floristic Region between 1945 and 2015: History, current understanding and future challenges. Transactions of the Royal Society of South Africa, 2016, 71, 207-303.	0.8	44
232	Global networks for invasion science: benefits, challenges and guidelines. Biological Invasions, 2017, 19, 1081-1096.	1.2	44
233	Effects of thirty-five years of afforestation with Pinus radiata on the composition of mesic mountain fynbos near Stellenbosch. South African Journal of Botany, 1986, 52, 309-315.	1.2	42
234	Incorporating risk mapping at multiple spatial scales into eradication management plans. Biological Invasions, 2014, 16, 691-703.	1.2	42

#	Article	IF	CITATIONS
235	Drivers of species turnover vary with species commonness for native and alien plants with different residence times. Ecology, 2018, 99, 2763-2775.	1.5	42
236	Soft Touch or Heavy Hand? Legislative Approaches for Preventing Invasions: Insights from Cacti in South Africa. Invasive Plant Science and Management, 2015, 8, 307-316.	0.5	41
237	Biological invasions and natural colonisations are different – the need for invasion science. NeoBiota, 0, 31, 87-98.	1.0	41
238	Defining optimal sampling effort for large-scale monitoring of invasive alien plants: a Bayesian method for estimating abundance and distribution. Journal of Applied Ecology, 2011, 48, 768-776.	1.9	40
239	Learning from our mistakes: minimizing problems with invasive biofuel plants. Current Opinion in Environmental Sustainability, 2011, 3, 36-42.	3.1	39
240	Supporting <i>Spartina</i> : Interdisciplinary perspective shows <i>Spartina</i> as a distinct solid genus. Ecology, 2019, 100, e02863.	1.5	39
241	A Computer-Based System for Fire Management in the Mountains of the Cape Province, South-Africa. International Journal of Wildland Fire, 1994, 4, 17.	1.0	38
242	Landscape Corridors: Possible Dangers?. Science, 2005, 310, 779-783.	6.0	38
243	Propagule pressure drives establishment of introduced freshwater fish: quantitative evidence from an irrigation network. Ecological Applications, 2013, 23, 1926-1937.	1.8	38
244	Much more give than take: South Africa as a major donor but infrequent recipient of invasive nonâ€native grasses. Global Ecology and Biogeography, 2016, 25, 679-692.	2.7	38
245	Chromolaena odorata (Siam weed) in eastern Africa: distribution and socio-ecological impacts. Biological Invasions, 2017, 19, 1285-1298.	1.2	38
246	Impacts of invasive alien trees on threatened lowland vegetation types in the Cape Floristic Region, South Africa. South African Journal of Botany, 2017, 108, 209-222.	1.2	38
247	Casuarina: biogeography and ecology of an important tree genus in a changing world. Biological Invasions, 2014, 16, 609-633.	1.2	37
248	Coexistence ofBanksiaspecies in southwestern Australia: the role of regional and local processes. Journal of Vegetation Science, 1995, 6, 329-342.	1.1	36
249	Movement, impacts and management of plant distributions in response to climate change: insights from invasions. Oikos, 2013, 122, 1265-1274.	1.2	36
250	A rapid survey of the invasive plant species in western Angola. African Journal of Ecology, 2017, 55, 56-69.	0.4	36
251	Tall-statured grasses: a useful functional group for invasion science. Biological Invasions, 2019, 21, 37-58.	1.2	36
252	Does origin determine environmental impacts? Not for bamboos. Plants People Planet, 2019, 1, 119-128.	1.6	36

#	Article	IF	CITATIONS
253	Plant invasions, restoration, and economics: Perspectives from South African fynbos. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 341-353.	1.1	35
254	Decreased insect visitation to a native species caused by an invasive tree in the Cape Floristic Region. Biological Conservation, 2013, 157, 196-203.	1.9	35
255	Initiating dialogue between scientists and managers of biological invasions. Biological Invasions, 2010, 12, 4077-4083.	1.2	34
256	Cultivation shapes genetic novelty in a globally important invader. Molecular Ecology, 2012, 21, 3187-3199.	2.0	34
257	The Biogeography of South African Terrestrial Plant Invasions. , 2020, , 67-96.		34
258	A proposed national strategic framework for the management of Cactaceae in South Africa. Bothalia, 2017, 47, .	0.2	34
259	Identifying barriers to effective management of widespread invasive alien trees: Prosopis species (mesquite) in South Africa as a case study. Global Environmental Change, 2016, 38, 183-194.	3.6	33
260	Historical range contraction, and not taxonomy, explains the contemporary genetic structure of the Australian tree Acacia dealbata Link. Tree Genetics and Genomes, 2018, 14, 1.	0.6	33
261	Riparian vegetation management in landscapes invaded by alien plants: Insights from South Africa. South African Journal of Botany, 2008, 74, 397-400.	1.2	32
262	Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants. Nature Communications, 2013, 4, 2454.	5.8	32
263	Challenging the view that invasive non-native plants are not a significant threat to the floristic diversity of Great Britain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2988-9.	3.3	32
264	Prosopis invasions in South Africa: Population structures and impacts on native tree population stability. Journal of Arid Environments, 2015, 114, 70-78.	1.2	32
265	<i>Eucalyptus camaldulensis</i> in South Africa – past, present, future. Transactions of the Royal Society of South Africa, 2020, 75, 1-22.	0.8	32
266	Native range size and growth form in Cactaceae predict invasiveness and impact. NeoBiota, 0, 30, 75-90.	1.0	32
267	Plant invasion ecology - dispatches from the front line. Diversity and Distributions, 2004, 10, 315-319.	1.9	31
268	Plant Diversity in the Human Diet: Weak Phylogenetic Signal Indicates Breadth. BioScience, 2008, 58, 151-159.	2.2	31
269	Is phylogenetic relatedness to native species important for the establishment of reptiles introduced to California and Florida?. Diversity and Distributions, 2011, 17, 172-181.	1.9	31
270	The absence of fire can cause a lag phase: The invasion dynamics of <i><scp>B</scp>anksia ericifolia</i> (<scp>P</scp> roteaceae). Austral Ecology, 2013, 38, 931-941.	0.7	31

#	Article	IF	CITATIONS
271	The potential range of Ailanthus altissima (tree of heaven) in South Africa: the roles of climate, land use and disturbance. Biological Invasions, 2017, 19, 3675-3690.	1.2	31
272	Even well-studied groups of alien species might be poorly inventoried: Australian Acacia species in South Africa as a case study. NeoBiota, 0, 39, 1-29.	1.0	31
273	Grasses as invasive plants in South Africa revisited: Patterns, pathways and management. Bothalia, 2017, 47, .	0.2	31
274	A tree well travelled: global genetic structure of the invasive tree <i>Acacia saligna</i> . Journal of Biogeography, 2015, 42, 305-314.	1.4	30
275	Using counterfactuals to evaluate the costâ€effectiveness of controlling biological invasions. Ecological Applications, 2016, 26, 475-483.	1.8	30
276	Intentionally introduced terrestrial invertebrates: patterns, risks, and options for management. Biological Invasions, 2016, 18, 1077-1088.	1.2	30
277	Patterns of alien plant distribution in a river landscape following an extreme flood. South African Journal of Botany, 2008, 74, 463-475.	1.2	29
278	Biogeographic concepts define invasion biology. Trends in Ecology and Evolution, 2009, 24, 586-586.	4.2	29
279	Estimating the effect of plantations on pine invasions in protected areas: a case study from South Africa. Journal of Applied Ecology, 2015, 52, 110-118.	1.9	29
280	Using the "regime shift―concept in addressing social–ecological change. Geographical Research, 2018, 56, 26-41.	0.9	29
281	A taxonomically and geographically constrained information base limits non-native reptile and amphibian risk assessment: a systematic review. PeerJ, 2018, 6, e5850.	0.9	29
282	Macroecology meets invasion ecology: performance of Australian acacias and eucalypts around the world revealed by features of their native ranges. Biological Invasions, 2014, 16, 565-576.	1.2	28
283	<i>Eucalyptus Camaldulensis</i> Invasion in Riparian Zones Reveals Few Significant Effects on Soil Physicoâ€Chemical Properties. River Research and Applications, 2015, 31, 590-601.	0.7	28
284	Distribution and management of Acacia implexa (Benth.) in South Africa: A suitable target for eradication?. South African Journal of Botany, 2012, 83, 23-35.	1.2	27
285	Both complete clearing and thinning of invasive trees lead to shortâ€ŧerm recovery of native riparian vegetation in the <scp>W</scp> estern <scp>C</scp> ape, <scp>S</scp> outh <scp>A</scp> frica. Applied Vegetation Science, 2013, 16, 193-204.	0.9	27
286	Resilience of Invaded Riparian Landscapes: The Potential Role of Soil-Stored Seed Banks. Environmental Management, 2015, 55, 86-99.	1.2	26
287	Using stable isotope analysis to answer fundamental questions in invasion ecology: Progress and prospects. Methods in Ecology and Evolution, 2020, 11, 196-214.	2.2	26
288	Invasion costs, impacts, and human agency: response to Sagoff 2020. Conservation Biology, 2020, 34, 1579-1582.	2.4	26

#	Article	IF	CITATIONS
289	Biological Invasions in South Africa's Urban Ecosystems: Patterns, Processes, Impacts, and Management. , 2020, , 275-309.		26
290	Does the legacy of historical biogeography shape current invasiveness in pines?. New Phytologist, 2016, 209, 1096-1105.	3.5	25
291	Ecological disequilibrium drives insect pest and pathogen accumulation in non-native trees. AoB PLANTS, 2016, , plw081.	1.2	25
292	Managing invasive species in cities: a decision support framework applied to Cape Town. Biological Invasions, 2017, 19, 3707-3723.	1.2	25
293	Global predictors of alien plant establishment success: combining niche and trait proxies. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182477.	1.2	25
294	The Bottom Line: Impacts of Alien Plant Invasions in Protected Areas. , 2013, , 19-41.		25
295	Using Natural Experiments in the Study of Alien Tree Invasions: Opportunities and Limitations. , 2004, , 180-201.		25
296	Invasion science for society: A decade of contributions from the Centre for Invasion Biology. South African Journal of Science, 2014, 110, 12.	0.3	24
297	Scientific and Normative Foundations for the Valuation of Alien-Species Impacts: Thirteen Core Principles. BioScience, 0, , biw160.	2.2	24
298	The importance of pollinators and autonomous selfâ€fertilisation in the early stages of plant invasions: <i>Banksia</i> and <i>Hakea</i> (Proteaceae) as case studies. Plant Biology, 2016, 18, 124-131.	1.8	24
299	Site-specific conditions influence plant naturalization: The case of alien Proteaceae in South Africa. Acta Oecologica, 2014, 59, 62-71.	0.5	23
300	Use of non-timber forest products from invasive alien Prosopis species (mesquite) and native trees in South Africa: implications for management. Forest Ecosystems, 2015, 2, .	1.3	23
301	Ecological restoration of ecosystems degraded by invasive alien plants in South African Fynbos: Is spontaneous succession a viable strategy?. Transactions of the Royal Society of South Africa, 2020, 75, 111-139.	0.8	23
302	Secondary invasion and weedy native species dominance after clearing invasive alien plants in South Africa: Status quo and prognosis. South African Journal of Botany, 2020, 132, 338-345.	1.2	23
303	Molecular systematics and ecology of invasive Kangaroo Paws in South Africa: management implications for a horticulturally important genus. Biological Invasions, 2010, 12, 3989-4002.	1.2	22
304	Clearing of invasive alien plants under different budget scenarios: using a simulation model to test efficiency. Biological Invasions, 2010, 12, 4099-4112.	1.2	22
305	Biofuels and biodiversity in South Africa. South African Journal of Science, 2011, 107, .	0.3	22
306	Montpellier broom (Genista monspessulana) and Spanish broom (Spartium junceum) in South Africa: An assessment of invasiveness and options for management. South African Journal of Botany, 2013, 87, 134-145.	1.2	22

#	Article	IF	CITATIONS
307	Emergence of weakâ€intransitive competition through adaptive diversification and ecoâ€evolutionary feedbacks. Journal of Ecology, 2018, 106, 877-889.	1.9	22
308	Biological Invasions and Ecological Restoration in South Africa. , 2020, , 665-700.		22
309	Soil type, microsite, and herbivory influence growth and survival of Schinus molle (Peruvian pepper) Tj ETQq1 1	.784314 i 1.2	rgBT /Overloc 21
310	Anticipating potential biodiversity conflicts for future biofuel crops in South Africa: incorporating spatial filters with species distribution models. GCB Bioenergy, 2015, 7, 273-287.	2.5	21
311	Allelopathic effects of invasive <i>Eucalyptus camaldulensis</i> on germination and early growth of four native species in the Western Cape, South Africa. Southern Forests, 2015, 77, 91-105.	0.2	21
312	Level of environmental threat posed by horticultural trade in Cactaceae. Conservation Biology, 2017, 31, 1066-1075.	2.4	21
313	Mechanistic reconciliation of community and invasion ecology. Ecosphere, 2021, 12, e03359.	1.0	21
314	Biotic Interactions as Mediators of Biological Invasions: Insights from South Africa. , 2020, , 387-427.		21
315	Predicting Incursion of Plant Invaders into Kruger National Park, South Africa: The Interplay of General Drivers and Species-Specific Factors. PLoS ONE, 2011, 6, e28711.	1.1	21
316	Quantifying errors and omissions in alien species lists: The introduction status of Melaleuca species in South Africa as a case study. NeoBiota, 0, 32, 89-105.	1.0	21
317	Contributions to the National Status Report on Biological Invasions in South Africa. Bothalia, 2017, 47, .	0.2	21
318	Human usage in the native range may determine future genetic structure of an invasion: insights from Acacia pycnantha. BMC Ecology, 2013, 13, 37.	3.0	20
319	Melaleuca parvistaminea Byrnes (Myrtaceae) in South Africa: Invasion risk and feasibility of eradication. South African Journal of Botany, 2014, 94, 24-32.	1.2	20
320	Frameworks used in invasion science: progress and prospects. NeoBiota, 0, 62, 1-30.	1.0	20
321	The Effects of Fire in Felled <i>Hakea sericea</i> and Natural Fynbos and Implications for Weed Control in Mountain Catchments. South African Forestry Journal, 1986, 139, 4-14.	0.2	19
322	Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure. Annals of Botany, 2013, 111, 895-904.	1.4	19
323	Multi-scale Roost Site Selection by Rafinesque's Big-eared Bat (Corynorhinus rafinesquii) and Southeastern Myotis (Myotis austroriparius) in Mississippi. American Midland Naturalist, 2013, 169, 43-55.	0.2	19
324	The Role of Environmental Factors in Promoting and Limiting Biological Invasions in South Africa. , 2020, , 355-385.		19

#	Article	IF	CITATIONS
325	A reference framework for the restoration of riparian vegetation in the Western Cape, South Africa, degraded by invasive Australian Acacias. South African Journal of Botany, 2004, 70, 767-776.	1.2	18
326	Reproductive potential and seedling establishment of the invasive alien tree <i>Schinus molle</i> (Anacardiaceae) in South Africa. Austral Ecology, 2009, 34, 678-687.	0.7	18
327	Soil water repellency in riparian systems invaded by Eucalyptus camaldulensis: A restoration perspective from the Western Cape Province, South Africa. Geoderma, 2013, 200-201, 9-17.	2.3	18
328	Trait positions for elevated invasiveness in adaptive ecological networks. Biological Invasions, 2021, 23, 1965-1985.	1.2	18
329	Highly diverse and highly successful: invasive Australian acacias have not experienced genetic bottlenecks globally. Annals of Botany, 2021, 128, 149-157.	1.4	18
330	A multi-scale modelling framework to guide management of plant invasions in a transboundary context. Forest Ecosystems, 2016, 3, .	1.3	17
331	The distribution and status of alien plants in a small South African town. South African Journal of Botany, 2018, 117, 71-78.	1.2	17
332	Global Actions for Managing Cactus Invasions. Plants, 2019, 8, 421.	1.6	17
333	A fine-scale assessment of the ecosystem service-disservice dichotomy in the context of urban ecosystems affected by alien plant invasions. Forest Ecosystems, 2019, 6, .	1.3	17
334	Predicting pathogen-induced mortality in Hakea sericea (Proteaceae), an aggressive alien plant invader in South Africa. Annals of Applied Biology, 1985, 106, 243-254.	1.3	16
335	Managing alien bird species: Time to move beyond "100 of the worst―lists?. Bird Conservation International, 2016, 26, 154-163.	0.7	16
336	Ranking of invasive spread through urban green areas in the world's 100 most populous cities. Biological Invasions, 2017, 19, 3527-3539.	1.2	16
337	A multi-criterion approach for prioritizing areas in urban ecosystems for active restoration following invasive plant control. Environmental Management, 2018, 62, 1150-1167.	1.2	16
338	Different environmental drivers of alien tree invasion affect different life-stages and operate at different spatial scales. Forest Ecology and Management, 2019, 433, 263-275.	1.4	16
339	Plant Invasions. , 2001, , 677-688.		15
340	Plant communities along the Eerste River, Western Cape, South Africa: Community descriptions and implications for restoration. Koedoe, 2013, 55, .	0.3	15
341	Scale-area curves: a tool for understanding the ecology and distribution of invasive tree species. Biological Invasions, 2014, 16, 553-563.	1.2	15
342	Casuarina cunninghamiana in the Western Cape, South Africa: Determinants of naturalisation and invasion, and options for management. South African Journal of Botany, 2014, 92, 134-146.	1.2	15

#	Article	IF	CITATIONS
343	Managing Urban Plant Invasions: a Multi-Criteria Prioritization Approach. Environmental Management, 2018, 62, 1168-1185.	1.2	15
344	Biogeographical comparison of terrestrial invertebrates and trophic feeding guilds in the native and invasive ranges of Carpobrotus edulis. NeoBiota, 0, 56, 49-72.	1.0	15
345	Successional changes on a former tank range in eastern Germany: Does increase of the native grass species Molinia caerulea cause decline of less competitive Drosera species?. Journal for Nature Conservation, 2010, 18, 63-74.	0.8	14
346	Globalization Effects on Common Plant Species. , 2013, , 700-706.		14
347	<i>Casuarina</i> Invasion Alters Primary Succession on Lava Flows on La Réunion Island. Biotropica, 2014, 46, 268-275.	0.8	14
348	Seed characteristics in Cactaceae: Useful diagnostic features for screening species for invasiveness?. South African Journal of Botany, 2016, 105, 61-65.	1.2	14
349	Medium-term vegetation recovery after removal of invasive Eucalyptus camaldulensis stands along a South African river. South African Journal of Botany, 2018, 119, 63-68.	1.2	14
350	Biological invasions in World Heritage Sites: current status and a proposed monitoring and reporting framework. Biodiversity and Conservation, 2020, 29, 3327-3347.	1.2	14
351	Invasion Frameworks: a Forest Pathogen Perspective. Current Forestry Reports, 2022, 8, 74-89.	3.4	14
352	Non-linearities, synergisms and plant extinctions in South African fynbos and Australian kwongan. Biodiversity and Conservation, 1996, 5, 1035-1046.	1.2	13
353	Potential of colour-infrared digital camera imagery for inventory and mapping of alien plant invasions in South African shrublands. International Journal of Remote Sensing, 2000, 21, 2965-2970.	1.3	13
354	Plant invasions: theoretical and practical challenges. Biological Invasions, 2010, 12, 3907-3911.	1.2	13
355	Managing biological invasions: charting courses to desirable futures in the Cape Floristic Region. Regional Environmental Change, 2011, 11, 311-320.	1.4	13
356	Insights on the persistence of pines (<i>Pinus</i> species) in the Late Cretaceous and their increasing dominance in the Anthropocene. Ecology and Evolution, 2018, 8, 10345-10359.	0.8	13
357	A review of the impacts of biological invasions in South Africa. Biological Invasions, 2022, 24, 27-50.	1.2	13
358	Biodiversity and ecosystem processes: Opportunities in Mediterranean-type ecosystems. Trends in Ecology and Evolution, 1993, 8, 79-81.	4.2	12
359	Experimental assessment of factors mediating the naturalization of a globally invasive tree on sandy coastal plains: a case study from Brazil. AoB PLANTS, 2016, 8, .	1.2	12
360	Weed Risk Assessments Are an Effective Component of Invasion Risk Management. Invasive Plant Science and Management, 2016, 9, 81-83.	0.5	12

#	Article	IF	CITATIONS
361	Unresolved native range taxonomy complicates inferences in invasion ecology: Acacia dealbata Link as an example. Biological Invasions, 2017, 19, 1715-1722.	1.2	12
362	Genetic analyses reveal complex introduction histories for the invasive tree <i>Acacia dealbata</i> Link around the world. Diversity and Distributions, 2021, 27, 360-376.	1.9	12
363	Links Between Biodiversity and Ecosystem Function in the Cape Floristic Region. Ecological Studies, 1995, , 285-333.	0.4	12
364	Commercial Forestry and Agroforestry as Sources of Invasive Alien Trees and Shrubs. , 1999, , 237-257.		12
365	Is invasion science moving towards agreed standards? The influence of selected frameworks. NeoBiota, 0, 62, 569-590.	1.0	12
366	Conservation biogeography: what's hot and what's not?. Diversity and Distributions, 2012, 18, 319-322.	1.9	11
367	The prognosis for Ailanthus altissima (Simaroubaceae; tree of heaven) as an invasive species in South Africa; insights from its performance elsewhere in the world. South African Journal of Botany, 2017, 112, 283-289.	1.2	11
368	Abiotic barriers limit tree invasion but do not hamper native shrub recruitment in invaded stands. Biological Invasions, 2017, 19, 109-129.	1.2	11
369	Introduction to the special issue: Tree invasions: towards a better understanding of their complex evolutionary dynamics. AoB PLANTS, 2017, 9, plx014.	1.2	11
370	What predicts the richness of seeder and resprouter species in fireâ€prone Cape fynbos: Rainfall reliability or vegetation density?. Austral Ecology, 2018, 43, 614-622.	0.7	11
371	Does vegetation structure influence criminal activity? Insights from Cape Town, South Africa. Frontiers of Biogeography, 2019, 11, .	0.8	11
372	Ghosts from the past: even comprehensive sampling of the native range may not be enough to unravel the introduction history of invasive species—the case of <i>Acacia dealbata</i> invasions in South Africa. American Journal of Botany, 2019, 106, 352-362.	0.8	11
373	Biological invasions in the Cape Floristic Region: history, current patterns, impacts, and management challenges. , 2014, , 273-298.		11
374	Factors Influencing Burning by Prescription in Mountain Fynbos Catchment Areas. South African Forestry Journal, 1985, 134, 22-32.	0.2	10
375	Diversity, stability and conservation of mediterranean-type ecosystems in a changing world: an introduction. Diversity and Distributions, 1999, 5, 1-2.	1.9	10
376	Using Lean Methodology to Decrease Wasted RN Time in Seeking Supplies in Emergency Departments. Journal of Nursing Administration, 2014, 44, 606-611.	0.7	10
377	A core of rhizosphere bacterial taxa associates with two of the world's most isolated plant congeners. Plant and Soil, 2021, 468, 277-294.	1.8	10
378	South Africa's Centre for Invasion Biology: An Experiment in Invasion Science for Society. , 2020, , 879-914.		10

#	Article	IF	CITATIONS
379	Invasive Alien Plants in Protected Areas: Threats, Opportunities, and the Way Forward. , 2013, , 621-639.		10
380	South Africa as a Donor of Naturalised and Invasive Plants to Other Parts of the World. , 2020, , 759-785.		10
381	An Assessment of the Potential Economic Impacts of the Invasive Polyphagous Shot Hole Borer (Coleoptera: Curculionidae) in South Africa. Journal of Economic Entomology, 2022, 115, 1076-1086.	0.8	10
382	INVASIVENESS OF CONIFERS: EXTENT AND POSSIBLE MECHANISMS. Acta Horticulturae, 2003, , 375-380.	0.1	9
383	Performance of seedlings of the invasive alien tree <i>Schinus molle</i> L. under indigenous and alien host trees in semiâ€arid savanna. African Journal of Ecology, 2010, 48, 155-158.	0.4	9
384	Management history determines gene flow in a prominent invader. Ecography, 2013, 36, 1032-1041.	2.1	9
385	The seed ecology of an ornamental wattle in South Africa — Why has Acacia elata not invaded a greater area?. South African Journal of Botany, 2014, 94, 40-45.	1.2	9
386	The challenges of managing invasive alien plants on private land in the Cape Floristic Region: insights from Vergelegen Wine Estate (2004–2015). Transactions of the Royal Society of South Africa, 2017, 72, 207-216.	0.8	9
387	The world needs BRICS countries to build capacity in invasion science. PLoS Biology, 2019, 17, e3000404.	2.6	9
388	Plant invasions: the role of biotic interactions - an overview , 2020, , 1-25.		9
389	Plant Invasions in Africa. , 2022, , 225-252.		9
390	GIRAE: a generalised approach for linking the total impact of invasion to species' range, abundance and per-unit effects. Biological Invasions, 2022, 24, 3147-3167.	1.2	9
391	Diversity, distributions and conservation biogeography. Diversity and Distributions, 2005, 11, 1-2.	1.9	8
392	Pines as Invasive Aliens: Outlook on Transgenic Pine Plantations in the Southern Hemisphere. Managing Forest Ecosystems, 2006, , 169-188.	0.4	8
393	Megastigmus wasp damage to seeds of Schinus molle, Peruvian pepper tree, across a rainfall gradient in South Africa: implications for invasiveness. African Entomology, 2008, 16, 127-131.	0.6	8
394	Satellite Tracking Large-scale Movements of Wood Storks Captured in the Gulf Coast Region. Waterbirds, 2008, 31, 35-41.	0.2	8
395	Modelling the effect of two biocontrol agents on the invasive alien tree Acacia cyclops—Flowering, seed production and agent survival. Ecological Modelling, 2014, 278, 100-113.	1.2	8
396	Science and Education at the Centre for Invasion Biology. World Sustainability Series, 2016, , 93-105.	0.3	8

#	Article	IF	CITATIONS
397	Genome size variation in Cactaceae and its relationship with invasiveness and seed traits. Biological Invasions, 2021, 23, 3047-3062.	1.2	8
398	Recovery of South African fynbos vegetation following alien woody plant clearing and fire: implications for restoration. , 2000, 25, 631.		8
399	A Cartographic Analysis of Physiographic Factors Influencing the Distribution of <i>Hakea</i> Spp, in the South-Western Cape. South African Forestry Journal, 1984, 128, 36-40.	0.2	7
400	The effects of past management practices for invasive alien plant control on subsequent recovery of fynbos on the Cape Peninsula, South Africa. South African Journal of Botany, 2004, 70, 804-815.	1.2	7
401	Genetic diversity and structure of the globally invasive tree, Paraserianthes lophantha subspecies lophantha, suggest an introduction history characterised by varying propagule pressure. Tree Genetics and Genomes, 2016, 12, 1.	0.6	7
402	Alien Bamboos in South Africa: a Socio-Historical Perspective. Human Ecology, 2019, 47, 121-133.	0.7	7
403	The invasive grass genus Nassella in South Africa: A synthesis. South African Journal of Botany, 2020, 135, 336-348.	1.2	7
404	A Computer System for Catchment Management: Background, Concepts and Development. Journal of Environmental Management, 1993, 39, 121-142.	3.8	6
405	Probability of Detection and Visual Count Error for Rafinesque's Big-eared Bat (Corynorhinus) Tj ETQq1 1 0.784 Naturalist, 2013, 169, 56-65.	314 rgBT / 0.2	Overlock 10 T 6
406	Is invasion success of Australian trees mediated by their native biogeography, phylogenetic history, or both?. AoB PLANTS, 2016, , plw080.	1.2	6
407	Network Invasion as an Open Dynamical System: Response to Rossberg and BarabÃjs. Trends in Ecology and Evolution, 2019, 34, 386-387.	4.2	6
408	Prioritization and thresholds for managing biological invasions in urban ecosystems. Urban Ecosystems, 2022, 25, 253-271.	1.1	6
409	Factors Affecting the Regeneration Success of Hakea sericea. South African Forestry Journal, 1984, 131, 63-68.	0.2	5
410	Distinct Biogeographic Phenomena Require a Specific Terminology: A Reply to Wilson and Sagoff. BioScience, 2020, 70, 112-114.	2.2	5
411	The status of alien bamboos in South Africa. South African Journal of Botany, 2021, 138, 33-40.	1.2	5
412	Holistic understanding of contemporary ecosystems requires integration of data on domesticated, captive and cultivated organisms. Biodiversity Data Journal, 2021, 9, e65371.	0.4	5
413	A rapid survey of naturalized and invasive eucalypt species in southwestern Limpopo, South Africa. South African Journal of Botany, 2022, 144, 339-346.	1.2	5

Potential Futures of Biological Invasions in South Africa. , 2020, , 917-946.

#	Article	IF	CITATIONS
415	EMAPi 2015: Highlighting links between science and management of alien plant invasions. NeoBiota, 0, 30, 1-3.	1.0	5
416	Patterns of introduction, naturalisation, invasion, and impact differ between fleshy- and dry-fruited species of Myrtaceae. Perspectives in Plant Ecology, Evolution and Systematics, 2022, 54, 125648.	1.1	5
417	Addressing a critique of the TEASI framework for invasive species risk assessment. Ecology Letters, 2013, 16, 1415-e6.	3.0	4
418	Plant Invasions. , 2013, , 90-102.		4
419	Honoring Harold A. Mooney: Citizen of the world and catalyst for invasion science. Biological Invasions, 2017, 19, 2219-2224.	1.2	4
420	Reconstructing the spread of invasive alien plants on privately-owned land in the Cape Floristic Region: Vergelegen Wine Estate as a case study. Southern African Geographical Journal, 2018, 100, 180-195.	0.9	4
421	Brief Motivational Interviewing for Substance Use by Medical Students Is Effective in the Emergency Department. Journal of Emergency Medicine, 2019, 57, 114-117.	0.3	4
422	Moving Toward Global Strategies for Managing Invasive Alien Species. , 2022, , 331-360.		4
423	Active restoration in South African fynbos – A long-term perspective from the Agulhas Plain. Transactions of the Royal Society of South Africa, 2022, 77, 133-143.	0.8	4
424	Lessons learned: how can we manage the invasion risk from biofuels?. Biofuels, 2013, 4, 455-457.	1.4	3
425	Invasion Science: Looking Forward Rather Than Revisiting Old Ground – A Reply to Zenni et al Trends in Ecology and Evolution, 2017, 32, 809-810.	4.2	3
426	Neonatives and translocated species: different terms are needed for different species categories in conservation policies. NeoBiota, 0, 68, 101-104.	1.0	3
427	Climate change and alien species in South Africa , 2014, , 129-147.		3
428	Fynbos vegetation recovery twelve years after removal of invasive Eucalyptus trees. South African Journal of Botany, 2022, 147, 764-773.	1.2	3
429	Plant invaders: The threat to natural ecosystems. Trends in Ecology and Evolution, 1995, 10, 508-509.	4.2	2
430	Invasive alien plants - case studies from Europe and North America. Diversity and Distributions, 2002, 8, 307-308.	1.9	2
431	Invasion biology deconstructed. Trends in Ecology and Evolution, 2009, 24, 358-359.	4.2	2
432	Botryosphaeriaceae associated with Acacia heterophylla (La Réunion) and Acacia koa (Hawaii). Fungal Biology, 2019, 123, 783-790.	1.1	2

#	Article	IF	CITATIONS
433	Alnus glutinosa (Betulaceae) in South Africa: invasive potential and management options. South African Journal of Botany, 2020, 135, 280-293.	1.2	2
434	A Cross-Scale Approach for Abundance Estimation of Invasive Alien Plants in a Large Protected Area. , 2013, , 73-88.		2
435	Community assembly and succession. , 2017, , 191-221.		2
436	Biofuel plants as potential invasive species: Environmental concerns and progress towards objective risk assessment. , 2017, , 47-60.		2
437	Mediterranean Pines as Invasive Species in the Southern Hemisphere. Managing Forest Ecosystems, 2021, , 83-99.	0.4	2
438	Optimal differentiation to the edge of trait space (EoTS). Evolutionary Ecology, 2022, 36, 743-752.	0.5	2
439	PLANT INVASION ECOLOGY - COMING OF AGE?. Diversity and Distributions, 2003, 9, 489-491.	1.9	1
440	Reply to Proença et al.: Sown biodiverse pastures are not a universal solution to invasion risk. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1696.	3.3	1
441	A global assessment of the potential distribution of naturalized and planted populations of the ornamental alien tree Schinus molle. NeoBiota, 0, 68, 105-126.	1.0	1
442	Managing Biodiversity on the Cape Peninsula, South Africa: A Hotspot Under Pressure. Ecological Studies, 1998, , 189-204.	0.4	1
443	Plant Invasions in Protected Areas: Outlining the Issues and Creating the Links. , 2013, , 3-18.		1
444	On Global Ecology. Global Ecology and Biogeography, 2000, 9, 182-184.	2.7	1
445	Landscape fragmentation in South Coast Renosterveld., South Africa., in relation to rainfall and topography. Austral Ecology, 2000, 25, 179-186.	0.7	1
446	Chapter 13 Current and Future Consequences of Invasion by Alien Species: A Case Study from South Africa. , 2009, , 183-201.		1
447	From dispersal to boosted range expansion. , 2017, , 70-95.		1
448	Managing biological invasions in the Anthropocene. , 2017, , 294-308.		1
449	Correction: Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2022, 30, 174-174.	2.1	1
450	Guiding restoration of riparian ecosystems degraded by plant invasions: Insights from a complex social-ecological system in the Global South. Ambio, 2021, 51, 1552.	2.8	1

#	Article	IF	CITATIONS
451	A Response to the Editorial of CWF Yu, April Issue, 2011. Indoor and Built Environment, 2011, 20, 577-577.	1.5	Ο
452	Frontiers of Biogeography: taking its place as a journal of choice for the publication of high quality biogeographical research articles. Frontiers of Biogeography, 2018, 10, .	0.8	0
453	Regime shifts. , 2017, , 169-190.		Ο
454	Non-equilibrium dynamics. , 2017, , 96-126.		0
455	The dynamics of spread. , 2017, , 21-47.		Ο
456	Complex adaptive networks. , 2017, , 267-293.		0
457	Modelling spatial dynamics. , 2017, , 48-69.		Ο
458	Foreword: Towards Evidence- Based and Risk- Weighted Strategies for Biosecurity. , 0, , xi-xiv.		0