
Jose Peral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190891/publications.pdf Version: 2024-02-01

LOSE DEDAL

#	Article	IF	CITATIONS
1	Photocatalytic performance of binary and ternary Pt–Cu2O–BiVO4 catalysts under visible-light irradiation. Ceramics International, 2021, 47, 32364-32370.	4.8	10
2	Photoactivity of nanostructured spheres of BiVO4 synthesized by ultrasonic spray pyrolysis at low temperature. Materials Research Bulletin, 2021, 143, 111447.	5.2	18
3	Photocatalytic degradation and toxicity reduction of isoniazid using β-Bi2O3 in real wastewater. Catalysis Today, 2020, 341, 82-89.	4.4	39
4	Hydrogen generation by irradiation of commercial CuO + TiO2 mixtures at solar pilot plant scale and in presence of organic electron donors. Applied Catalysis B: Environmental, 2019, 257, 117890.	20.2	27
5	In situ synthesis of Au-decorated BiOCl/BiVO4 hybrid ternary system with enhanced visible-light photocatalytic behavior. Applied Surface Science, 2019, 487, 743-754.	6.1	32
6	Economic Assessment and Possible Industrial Application of a (Photo)catalytic Process. , 2019, , 235-267.		2
7	Solar pilot plant scale hydrogen generation by irradiation of Cu/TiO2 composites in presence of sacrificial electron donors. Applied Catalysis B: Environmental, 2018, 229, 15-23.	20.2	62
8	Synthesis of graphene-based photocatalysts for water splitting by laser-induced doping with ionic liquids. Carbon, 2018, 130, 48-58.	10.3	26
9	Catalytic role of bridging oxygens in TiO ₂ liquid phase photocatalytic reactions: analysis of H ₂ ¹⁶ 0 photooxidation on labeled Ti ¹⁸ O ₂ . Catalysis Science and Technology, 2017, 7, 902-910.	4.1	8
10	Facile synthesis of visible-light-driven Cu ₂ O/BiVO ₄ composites for the photomineralization of recalcitrant pesticides. RSC Advances, 2017, 7, 45885-45895.	3.6	38
11	Optimization of the experimental conditions of hydrogen production by the Pt–(CdS/ZnS) system under visible light illumination. RSC Advances, 2016, 6, 36681-36688.	3.6	26
12	Photocatalytic hydrogen production in a solar pilot plant using a Au/TiO2 photo catalyst. International Journal of Hydrogen Energy, 2016, 41, 11933-11940.	7.1	62
13	Photocatalytic Hydrogen Production Under Visible Light by Using a CdS/WO3 Composite. Catalysis Letters, 2016, 146, 100-108.	2.6	19
14	A Comparison of the Environmental Impact of Different AOPs: Risk Indexes. Molecules, 2015, 20, 503-518.	3.8	4
15	Efficiency of Cu2O/BiVO4 particles prepared with a new soft procedure on the degradation of dyes under visible-light irradiation. Applied Surface Science, 2015, 328, 361-367.	6.1	75
16	Advanced Oxidation Processes at Laboratory Scale: Environmental and Economic Impacts. ACS Sustainable Chemistry and Engineering, 2015, 3, 3188-3196.	6.7	63
17	Catalytic Role of TiO ₂ Terminal Oxygen Atoms in Liquidâ€Phase Photocatalytic Reactions: Oxidation of Aromatic Compounds in Anhydrous Acetonitrile. ChemPhysChem, 2014, 15, 2311-2320.	2.1	20
18	Low-temperature synthesis of BiVO4 powders by Pluronic-assisted hydrothermal method: Effect of the surfactant and temperature on the morphology and structural control. Ceramics International, 2014, 40, 4631-4638.	4.8	27

JOSE PERAL

#	Article	IF	CITATIONS
19	Comprehensive Kinetic and Mechanistic Analysis of TiO ₂ Photocatalytic Reactions According to the Direct–Indirect Model: (II) Experimental Validation. Journal of Physical Chemistry C, 2014, 118, 14276-14290.	3.1	52
20	Comprehensive Kinetic and Mechanistic Analysis of TiO ₂ Photocatalytic Reactions According to the Direct–Indirect Model: (I) Theoretical Approach. Journal of Physical Chemistry C, 2014, 118, 14266-14275.	3.1	39
21	Heterogeneous photocatalytic hydrogen generation in a solar pilot plant. International Journal of Hydrogen Energy, 2013, 38, 12718-12724.	7.1	61
22	Catalytic Role of Surface Oxygens in TiO ₂ Photooxidation Reactions: Aqueous Benzene Photooxidation with Ti ¹⁸ O ₂ under Anaerobic Conditions. Journal of Physical Chemistry Letters, 2013, 4, 1415-1422.	4.6	56
23	Transition metal tungstates synthesized by co-precipitation method: Basic photocatalytic properties. Electrochimica Acta, 2012, 81, 227-232.	5.2	99
24	Commentary on the article: "A new kinetic model for heterogeneous photocatalysis with titanium dioxide: Case of non-specific adsorption considering back reaction, by S. Valencia, F. Cataño, L. Rios, G. Restrepo and J. MarÃn, published in Applied Catalysis B: Environmental, 104 (2011) 300–304― Applied Catalysis B: Environmental, 2012, 111-112, 649-650.	20.2	8
25	Nitrogen doped TiO2 for hydrogen production under visible light irradiation. Solar Energy, 2012, 86, 558-566.	6.1	51
26	Life cycle assessment of solar photo-Fenton and solar photoelectro-Fenton processes used for the degradation of aqueous α-methylphenylglycine. Journal of Environmental Monitoring, 2011, 13, 167-174.	2.1	29
27	Treatment of biorecalcitrant α-methylphenylglycine aqueous solutions with a solar photo-Fenton-aerobic biological coupling: Biodegradability and environmental impact assessment. Chemical Engineering Journal, 2011, 172, 654-664.	12.7	17
28	Assessment of Pharmaceuticals Fate in a Model Environment. Water, Air, and Soil Pollution, 2011, 218, 413-422.	2.4	17
29	Surface Chemistry and Interfacial Chargeâ€Transfer Mechanisms in Photoinduced Oxygen Exchange at O ₂ –TiO ₂ Interfaces. ChemPhysChem, 2011, 12, 901-907.	2.1	28
30	Comparative evaluation of polymer surface functionalization techniques before iron oxide deposition. Activity of the iron oxide-coated polymer films in the photo-assisted degradation of organic pollutants and inactivation of bacteria. Chemical Engineering Journal, 2010, 160, 176-184.	12.7	16
31	Comments on the published article "Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoeletrocatalytic reactions with TiO2-film electrodes by J. Yang, J. Dai, Ch. Chen, J. Zhao; J. Photochem. Photobiol. A: Chem. 208 (2009) 66–77â€, Journal of Photochemistry and Photobiology A: Chemistry. 2010. 210. 215-216.	3.9	5
32	Oxidation of α-methylphenylglycine under Fenton and electro-Fenton conditions in the dark and in the presence of solar light. Applied Catalysis B: Environmental, 2009, 89, 12-21.	20.2	37
33	Predicted environmental concentrations of cocaine and benzoylecgonine in a model environmental system. Water Research, 2009, 43, 5236-5242.	11.3	20
34	Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195, 205-214.	3.9	93
35	The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal. Journal of Hazardous Materials, 2008, 154, 484-490.	12.4	132
36	Coupled solar photo-Fenton and biological treatment for the degradation of diuron and linuron herbicides at pilot scale. Chemosphere, 2008, 72, 622-629.	8.2	38

JOSE PERAL

#	Article	IF	CITATIONS
37	Degradation Pathways of the Commercial Reactive Azo Dye Procion Red H-E7B under Solar-Assisted Photo-Fenton Reaction. Environmental Science & Technology, 2008, 42, 6663-6670.	10.0	46
38	Photocatalytic Cyanide Oxidation from Aqueous Copper Cyanide Solutions over TiO2 and ZnO. Journal of Chemical Technology and Biotechnology, 2007, 53, 93-96.	3.2	29
39	LIFE CYCLE ASSESSMENT OF THE REMOVAL OF DIURON AND LINURON HERBICIDES FROM WATER USING THREE ENVIRONMENTALLY FRIENDLY TECHNOLOGIES. Environmental Technology (United Kingdom), 2007, 28, 819-830.	2.2	21
40	Life-Cycle Assessment of a Coupled Advanced Oxidation-Biological Process for Wastewater Treatment: Comparison with Granular Activated Carbon Adsorption. Environmental Engineering Science, 2007, 24, 638-651.	1.6	45
41	Biodegradability of treated aqueous solutions of biorecalcitrant pesticides by means of photocatalytic ozonation. Desalination, 2007, 211, 22-33.	8.2	74
42	Evaluation of the intermediates generated during the degradation of Diuron and Linuron herbicides by the photo-Fenton reaction. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 364-373.	3.9	53
43	Combined photo-Fenton and biological treatment for Diuron and Linuron removal from water containing humic acid. Journal of Hazardous Materials, 2007, 147, 167-174.	12.4	49
44	Use of Physicochemical Parameters To Assess the Environmental Fate of Organic Pollutants: The Fugacity Model. Journal of Chemical Education, 2006, 83, 237.	2.3	4
45	Environmental assessment of different advanced oxidation processes applied to a bleaching Kraft mill effluent. Chemosphere, 2006, 62, 9-16.	8.2	56
46	Assessment of photo-Fenton and biological treatment coupling for Diuron and Linuron removal from water. Water Research, 2006, 40, 2533-2540.	11.3	63
47	Life cycle assessment of a coupled solar photocatalytic–biological process for wastewater treatment. Water Research, 2006, 40, 3533-3540.	11.3	91
48	Degradation of Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor. Journal of Hazardous Materials, 2006, 134, 220-229.	12.4	57
49	Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor. Journal of Hazardous Materials, 2006, 138, 363-369.	12.4	132
50	Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal. Journal of Hazardous Materials, 2006, 138, 218-225.	12.4	83
51	Combining photo-Fenton process with aerobic sequencing batch reactor for commercial hetero-bireactive dye removal. Applied Catalysis B: Environmental, 2006, 67, 86-92.	20.2	61
52	Microwave activated chemical bath deposition (MW-CBD) of zinc oxide: Influence of bath composition and substrate characteristics. Journal of Crystal Growth, 2005, 285, 6-16.	1.5	38
53	Enhanced photocatalytic degradation of maleic acid by Fe(III) adsorption onto the TiO2 surface. Catalysis Today, 2005, 101, 245-252.	4.4	33
54	Environmental assessment of different solar driven advanced oxidation processes. Solar Energy, 2005, 79, 369-375.	6.1	133

JOSE PERAL

#	Article	IF	CITATIONS
55	Enhancement of photocatalytic activity of TiO by adsorbed aluminium(III). Applied Catalysis B: Environmental, 2005, 55, 105-113.	20.2	14
56	Nanostructured zinc oxide films grown from microwave activated aqueous solutions. Thin Solid Films, 2005, 483, 79-83.	1.8	56
57	Aluminium(iii) adsorption: a soft and simple method to prevent TiO2deactivation during salicylic acid photodegradation. Chemical Communications, 2005, , 1851-1853.	4.1	25
58	Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation. Chemosphere, 2005, 58, 1127-1133.	8.2	155
59	Decolorisation and mineralisation of homo- and hetero-bireactive dyes under Fenton and photo-Fenton conditions. Coloration Technology, 2004, 120, 188-194.	1.5	29
60	Fe(III) photocatalyzed degradation of low chain carboxylic acids. Applied Catalysis B: Environmental, 2004, 50, 89-99.	20.2	48
61	TiO2 deactivation during the gas-phase photocatalytic oxidation of dimethyl sulfide. Applied Catalysis B: Environmental, 2004, 52, 69-77.	20.2	43
62	Decolorization and mineralization of commercial reactive dyes under solar light assisted photo-Fenton conditions. Solar Energy, 2004, 77, 573-581.	6.1	76
63	Solar activated ozonation of phenol and malic acid. Chemosphere, 2003, 50, 1085-1093.	8.2	26
64	Experimental design of Fenton and photo-Fenton reactions for the treatment of cellulose bleaching effluents. Chemosphere, 2003, 53, 1211-1220.	8.2	145
65	How Green Is a Chemical Reaction? Application of LCA to Green Chemistry. Environmental Science & Technology, 2002, 36, 5517-5520.	10.0	51
66	Electrochemically assisted deposition of titanium dioxide on aluminium cathodes. Journal of Materials Chemistry, 2002, 12, 2769-2773.	6.7	28
67	Fenton and photo-Fenton oxidation of textile effluents. Water Research, 2002, 36, 2703-2710.	11.3	355
68	Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Applied Catalysis B: Environmental, 2002, 36, 63-74.	20.2	249
69	Removal of organic contaminants in paper pulp effluents by AOPs: an economic study. Journal of Chemical Technology and Biotechnology, 2002, 77, 525-532.	3.2	45
70	Treatment of bleaching Kraft mill effluents and polychlorinated phenolic compounds with ozonation. Journal of Chemical Technology and Biotechnology, 2002, 77, 891-897.	3.2	21
71	Photocatalytic degradation of short-chain organic diacids. Catalysis Today, 2002, 76, 221-233.	4.4	92
72	TiO2 deactivation during gas-phase photocatalytic oxidation of ethanol. Catalysis Today, 2002, 76, 259-270.	4.4	105

Jose Peral

#	Article	IF	CITATIONS
73	Titanium(IV) oxide thin films obtained by a two-step soft-solution method. Thin Solid Films, 2002, 411, 185-191.	1.8	22
74	Low-Temperature Deposition of TiO2 Thin Films with Photocatalytic Activity from Colloidal Anatase Aqueous Solutions. Chemistry of Materials, 2001, 13, 2567-2573.	6.7	130
75	H2O2 Formation from photocatalytic processes at the ZnO/water interface. Environmental Science and Pollution Research, 2001, 8, 285-287.	5.3	37
76	TiO2 Layers Grown from Flowing Precursor Solutions Using Microwave Heating. Langmuir, 2001, 17, 891-896.	3.5	41
77	TIO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds. Applied Catalysis B: Environmental, 2001, 30, 359-373.	20.2	200
78	Multivariate approach to photocatalytic degradation of a cellulose bleaching effluent. Applied Catalysis B: Environmental, 2001, 33, 89-96.	20.2	53
79	2,4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO2/UVA/O3 and Fe(II)/UVA/O3 systems. Applied Catalysis B: Environmental, 2000, 27, 169-177.	20.2	162
80	Synthesis and photocatalytic activity of mesoporous anatase prepared from tetrabutylammonium-titania composites. Materials Research Bulletin, 2000, 35, 193-202.	5.2	46
81	Replacement of H2O2 by O2 in Fenton and photo-Fenton reactions. Chemosphere, 2000, 41, 1187-1192.	8.2	92
82	Preparation of anatase powders from fluorine-complexed titanium(iv) aqueous solution using microwave irradiation. Journal of Materials Chemistry, 2000, 10, 1911-1914.	6.7	32
83	1,2-Diolates of titanium as suitable precursors for the preparation of photoactive high surface titania. Applied Catalysis B: Environmental, 1999, 21, 269-277.	20.2	51
84	Kinetics of the photocatalytic oxidation of N(III) and S(IV) on different semiconductor oxides. Chemosphere, 1999, 38, 1265-1271.	8.2	14
85	Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental, 1998, 16, 31-42.	20.2	374
86	Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. Applied Catalysis B: Environmental, 1998, 16, 187-196.	20.2	143
87	Aniline degradation by combined photocatalysis and ozonation. Applied Catalysis B: Environmental, 1998, 19, 59-65.	20.2	182
88	Oxidation of HSO3â^' in aqueous suspensions of α-Fe2O3, α-FeOOh, β-FeOOH and γ-FeOOH in the dark and under illumination. Environmental Pollution, 1997, 95, 283-288.	7.5	15
89	Removal of organic contaminants in paper pulp treatment effluents by TiO2 photocatalyzed oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 109, 281-286.	3.9	32
90	TiO2 photocatalyst deactivation by gas-phase oxidation of heteroatom organics. Journal of Molecular Catalysis A, 1997, 115, 347-354.	4.8	97

Jose Peral

#	Article	IF	CITATIONS
91	Heterogeneous Photocatalysis for Purification, Decontamination and Deodorization of Air. Journal of Chemical Technology and Biotechnology, 1997, 70, 117-140.	3.2	362
92	Photocatalyzed destruction of aniline in UV-illuminated aqueous TiO2 suspensions. Electrochimica Acta, 1997, 42, 1877-1882.	5.2	63
93	Photocatalyzed Degradation of Phenol, 2,4-Dichlorophenol, Phenoxyacetic Acid and 2,4-Dichlorophenoxyacetic Acid over SupportedTiO2 in a Flow System. Journal of Chemical Technology and Biotechnology, 1996, 67, 237-242.	3.2	72
94	Degradation of 2,4-dichlorophenoxyacetic acid by in situ photogenerated fenton reagent. Electrochimica Acta, 1996, 41, 1981-1985.	5.2	45
95	Detection and elimination of the constant error component and the interactive matrix interference in the determination of adsorbable organic halogen (AOX) in bleached kraft paper pulp mill effluents. Analytica Chimica Acta, 1996, 333, 139-146.	5.4	6
96	Oxidation of S(IV) to S(VI) under Fenton, photo-Fenton and γ-FeOOH photocatalized conditions. Journal of Molecular Catalysis A, 1996, 112, 269-276.	4.8	5
97	Photo-oxidation of sulfite ions in the presence of some iron oxides. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 87, 121-125.	3.9	16
98	Redox photodegradation of 2,4-dichlorophenoxyacetic acid over TiO2. Applied Catalysis B: Environmental, 1995, 5, 377-387.	20.2	91
99	Heterogeneous Photochemistry: An Easy Experiment. Journal of Chemical Education, 1995, 72, 565.	2.3	13
100	Some observations about the photocatalytic oxidation of cyanate to nitrate over TiO2. Electrochimica Acta, 1994, 39, 2461-2463.	5.2	13
101	Heterogeneous photocatalytic oxidation of nitrite over iron-doped TiO2 samples. Journal of Molecular Catalysis, 1994, 87, 67-74.	1.2	38
102	Factors affecting the kinetics of methyl orange reduction photosensitized by colloidal CdS. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 73, 47-52.	3.9	19
103	Photo-oxidation of phenoxyacetic acid by TiO2-illuminated catalyst. Applied Catalysis B: Environmental, 1993, 3, 45-53.	20.2	40
104	Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. Journal of Catalysis, 1992, 136, 554-565.	6.2	480
105	Photoreduction of Cr(VI) Over CdS Supported on a Glass Matrix. Hazardous Waste and Hazardous Materials, 1991, 8, 151-159.	0.4	4
106	Photogalvanic behaviour of K3Mn(CN)6 in CNâ^' aqueous solutions. Electrochimica Acta, 1990, 35, 427-429.	5.2	4
107	Photosensitized CNâ^' oxidation over TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1990, 55, 251-257.	3.9	42
108	Competitive processes in photocatalysis. Phenol-sulphide and phenol-cyanide competitive photooxidation over ZnO. Electrochimica Acta, 1989, 34, 1335-1338.	5.2	6

#	Article	IF	CITATIONS
109	Light-induced oxidation of phenol over ZnO powder. Journal of Photochemistry and Photobiology A: Chemistry, 1988, 44, 209-217.	3.9	53
110	Removal of toxic cyanide from water by heterogeneous photocatalytic oxidation over ZnO. Solar Energy, 1988, 41, 55-59.	6.1	24