John R Ussher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190855/publications.pdf Version: 2024-02-01

IOHN PILSCHED

#	Article	IF	CITATIONS
1	Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews, 2010, 90, 207-258.	13.1	1,643
2	Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metabolism, 2008, 7, 45-56.	7.2	1,618
3	Cardiovascular Biology of the Incretin System. Endocrine Reviews, 2012, 33, 187-215.	8.9	468
4	Cardiovascular Actions of Incretin-Based Therapies. Circulation Research, 2014, 114, 1788-1803.	2.0	301
5	Targeting fatty acid and carbohydrate oxidation — A novel therapeutic intervention in the ischemic and failing heart. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1333-1350.	1.9	298
6	Inhibition of De Novo Ceramide Synthesis Reverses Diet-Induced Insulin Resistance and Enhances Whole-Body Oxygen Consumption. Diabetes, 2010, 59, 2453-2464.	0.3	296
7	The Emerging Role of Metabolomics inÂtheÂDiagnosis and Prognosis of Cardiovascular Disease. Journal of the American College of Cardiology, 2016, 68, 2850-2870.	1.2	259
8	Cardiac Insulin-Resistance and Decreased Mitochondrial Energy Production Precede the Development of Systolic Heart Failure After Pressure-Overload Hypertrophy. Circulation: Heart Failure, 2013, 6, 1039-1048.	1.6	196
9	Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovascular Research, 2012, 94, 359-369.	1.8	154
10	Gut microbiota metabolism of l-carnitine and cardiovascular risk. Atherosclerosis, 2013, 231, 456-461.	0.4	152
11	Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1555-1568.	1.2	125
12	Insulin-Stimulated Cardiac Glucose Oxidation Is Increased in High-Fat Diet–Induced Obese Mice Lacking Malonyl CoA Decarboxylase. Diabetes, 2009, 58, 1766-1775.	0.3	116
13	Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovascular Research, 2019, 115, 1606-1616.	1.8	114
14	TCF1 links GIPR signaling to the control of beta cell function and survival. Nature Medicine, 2016, 22, 84-90.	15.2	108
15	Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation. Cardiovascular Research, 2011, 89, 148-156.	1.8	105
16	Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Molecular Metabolism, 2014, 3, 507-517.	3.0	102
17	Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovascular Diabetology, 2019, 18, 86.	2.7	102
18	Targeting the glucagon receptor improves cardiac function and enhances insulin sensitivity following a myocardial infarction. Cardiovascular Diabetology, 2019, 18, 1.	2.7	98

John R Ussher

#	Article	IF	CITATIONS
19	Evolving Concepts of Myocardial Energy Metabolism. Circulation Research, 2016, 119, 1173-1176.	2.0	90
20	Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovascular Research, 2014, 101, 30-38.	1.8	83
21	Inhibition of Dipeptidyl Peptidase-4 Impairs Ventricular Function and Promotes Cardiac Fibrosis in High Fat–Fed Diabetic Mice. Diabetes, 2016, 65, 742-754.	0.3	82
22	The malonyl CoA axis as a potential target for treating ischaemic heart disease. Cardiovascular Research, 2008, 79, 259-268.	1.8	79
23	Targeting ceramide metabolism in obesity. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E423-E435.	1.8	79
24	Cellular Sites and Mechanisms Linking Reduction of Dipeptidyl Peptidase-4 Activity to Control of Incretin Hormone Action and Glucose Homeostasis. Cell Metabolism, 2017, 25, 152-165.	7.2	79
25	Pyridine Nucleotide Regulation of Cardiac Intermediary Metabolism. Circulation Research, 2012, 111, 628-641.	2.0	68
26	The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Molecular Metabolism, 2017, 6, 1339-1349.	3.0	63
27	Targeting malonyl CoA inhibition of mitochondrial fatty acid uptake as an approach to treat cardiac ischemia/reperfusion. Basic Research in Cardiology, 2009, 104, 203-210.	2.5	57
28	Inactivation of the Glucose-Dependent Insulinotropic Polypeptide Receptor Improves Outcomes following Experimental Myocardial Infarction. Cell Metabolism, 2018, 27, 450-460.e6.	7.2	56
29	Targeting Intermediary Metabolism in the Hypothalamus as a Mechanism to Regulate Appetite. Pharmacological Reviews, 2010, 62, 237-264.	7.1	55
30	Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovascular Research, 2021, 117, 1178-1187.	1.8	55
31	Cardiomyocyte glucagon receptor signaling modulates outcomes in mice with experimental myocardial infarction. Molecular Metabolism, 2015, 4, 132-143.	3.0	54
32	Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity. Science Translational Medicine, 2019, 11, .	5.8	51
33	Glucagon-like peptide-1 receptor action in the vasculature. Peptides, 2019, 111, 26-32.	1.2	50
34	Inhibition of Serine Palmitoyl Transferase I Reduces Cardiac Ceramide Levels and Increases Glycolysis Rates following Diet-Induced Insulin Resistance. PLoS ONE, 2012, 7, e37703.	1.1	44
35	The role of cardiac lipotoxicity in the pathogenesis of diabetic cardiomyopathy. Expert Review of Cardiovascular Therapy, 2014, 12, 345-358.	0.6	44
36	FoxO1 regulates myocardial glucose oxidation rates via transcriptional control of pyruvate dehydrogenase kinase 4 expression. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H479-H490.	1.5	44

JOHN R USSHER

#	Article	IF	CITATIONS
37	Malonyl CoA Decarboxylase Inhibition Improves Cardiac Function Post-Myocardial Infarction. JACC Basic To Translational Science, 2019, 4, 385-400.	1.9	37
38	Pimozide Alleviates Hyperglycemia in Diet-Induced Obesity by Inhibiting Skeletal Muscle Ketone Oxidation. Cell Metabolism, 2020, 31, 909-919.e8.	7.2	37
39	Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway. Molecular Metabolism, 2017, 6, 503-511.	3.0	33
40	The GLP-1 Receptor Agonist Liraglutide Increases Myocardial Glucose Oxidation Rates via Indirect Mechanisms and Mitigates Experimental Diabetic Cardiomyopathy. Canadian Journal of Cardiology, 2021, 37, 140-150.	0.8	33
41	Trimetazidine Therapy Prevents Obesity-Induced Cardiomyopathy in Mice. Canadian Journal of Cardiology, 2014, 30, 940-944.	0.8	26
42	FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Reports, 2021, 35, 108935.	2.9	26
43	Myocardial fatty acid utilization as a determinant of cardiac efficiency and function. Clinical Lipidology, 2009, 4, 379-389.	0.4	24
44	Role of the atypical protein kinase Cζ in regulation of 5′-AMP-activated protein kinase in cardiac and skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E349-E357.	1.8	21
45	Myocardial Energy Metabolism in Non-ischemic Cardiomyopathy. Frontiers in Physiology, 2020, 11, 570421.	1.3	20
46	GIPR Is Predominantly Localized to Nonadipocyte Cell Types Within White Adipose Tissue. Diabetes, 2022, 71, 1115-1127.	0.3	20
47	Guidelines on models of diabetic heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H176-H200.	1.5	20
48	Metabolic, structural and biochemical changes in diabetes and the development of heart failure. Diabetologia, 2022, 65, 411-423.	2.9	19
49	The impact of current and novel anti-diabetic therapies on cardiovascular risk. Future Cardiology, 2012, 8, 895-912.	0.5	18
50	A structure-activity relationship study of Forkhead Domain Inhibitors (FDI): The importance of halogen binding interactions. Bioorganic Chemistry, 2019, 93, 103269.	2.0	18
51	Deletion of BCATm increases insulin-stimulated glucose oxidation in the heart. Metabolism: Clinical and Experimental, 2021, 124, 154871.	1.5	18
52	Treatment with the 3-Ketoacyl-CoA Thiolase Inhibitor Trimetazidine Does Not Exacerbate Whole-Body Insulin Resistance in Obese Mice. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 487-496.	1.3	17
53	Glucagon-like peptide-1 receptor mediated control of cardiac energy metabolism. Peptides, 2018, 100, 94-100.	1.2	17
54	SP1-independent inhibition of FOXM1 by modified thiazolidinediones. European Journal of Medicinal Chemistry, 2021, 209, 112902.	2.6	16

JOHN R USSHER

#	Article	IF	CITATIONS
55	The antianginal ranolazine mitigates obesity-induced nonalcoholic fatty liver disease and increases hepatic pyruvate dehydrogenase activity. JCI Insight, 2019, 4, .	2.3	14
56	Pyruvate Dehydrogenase as a Therapeutic Target for Nonalcoholic Fatty Liver Disease. ACS Pharmacology and Translational Science, 2021, 4, 582-588.	2.5	14
57	Genetic and Pharmacological Inhibition of Malonyl CoA Decarboxylase Does Not Exacerbate Age-Related Insulin Resistance in Mice. Diabetes, 2016, 65, 1883-1891.	0.3	13
58	Cardiovascular Effects of Incretin-Based Therapies: Integrating Mechanisms With Cardiovascular Outcome Trials. Diabetes, 2022, 71, 173-183.	0.3	13
59	Role of Cytochrome p450 and Soluble Epoxide Hydrolase Enzymes and Their Associated Metabolites in the Pathogenesis of Diabetic Cardiomyopathy. Journal of Cardiovascular Pharmacology, 2019, 74, 235-245.	0.8	11
60	<scp>l</scp> itrulline supplementation improves glucose and exercise tolerance in obese male mice. Experimental Physiology, 2020, 105, 270-281.	0.9	11
61	The Impact of Antidiabetic Therapies on Diastolic Dysfunction and Diabetic Cardiomyopathy. Frontiers in Physiology, 2020, 11, 603247.	1.3	11
62	Accumulation of ceramide in slowâ€ŧwitch muscle contributes to the development of insulin resistance in the obese JCR:LA p rat. Experimental Physiology, 2015, 100, 730-741.	0.9	10
63	Cardiovascular biology of the GIP receptor. Peptides, 2020, 125, 170228.	1.2	10
64	Barth syndrome-related cardiomyopathy is associated with a reduction in myocardial glucose oxidation. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H2255-H2269.	1.5	9
65	Skeletal muscle-specific Cre recombinase expression, controlled by the human α-skeletal actin promoter, improves glucose tolerance in mice fed a high-fat diet. Diabetologia, 2018, 61, 1849-1855.	2.9	8
66	Dietary-Induced Obesity, Hepatic Cytochrome P450, and Lidocaine Metabolism: Comparative Effects of High-Fat Diets in Mice and Rats and Reversibility of Effects With Normalization of Diet. Journal of Pharmaceutical Sciences, 2020, 109, 1199-1210.	1.6	8
67	SNPs for Genes Encoding the Mitochondrial Proteins Sirtuin3 and Uncoupling Protein 2 Are Associated With Disease Severity, Type 2 Diabetes, and Outcomes in Patients With Pulmonary Arterial Hypertension and This Is Recapitulated in a New Mouse Model Lacking Both Genes. Journal of the American Heart Association 2021, 10, e020451	1.6	7
68	Deciphering ventricular GLP-1 action: time for a change of heart. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1390-H1392.	1.5	6
69	Targeting MicroRNAs to Limit Myocardial Lipid Accumulation. Circulation Research, 2015, 116, 229-231.	2.0	5
70	Revisiting protein acetylation and myocardial fatty acid oxidation. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H617-H619.	1.5	5
71	Female offspring born to obese and insulin-resistant dams are not at increased risk for obesity and metabolic dysfunction during early development. Canadian Journal of Physiology and Pharmacology, 2018, 96, 97-102.	0.7	4
72	Sugar-sweetened beverages and vascular function: food for thought. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H285-H288.	1.5	3

JOHN R USSHER

#	Article	IF	CITATIONS
73	An isoproteic cocoa butter-based ketogenic diet fails to improve glucose homeostasis and promote weight loss in obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E8-E20.	1.8	3
74	Incretin-based therapies for the failing heart. Cardiovascular Endocrinology, 2016, 5, 86-92.	0.8	1
75	Cardiovascular outcomeÂtrials in Type 2 diabetes: food for thought. Future Cardiology, 2021, 17, 407-410.	0.5	1
76	Decreased Maternal Cardiac Glucose Oxidation. Circulation Research, 2017, 121, 1299-1301.	2.0	0
77	The antianginal ranolazine does not confer beneficial actions against hepatic steatosis in male mice subjected to high-fat diet and streptozotocin induced type 2 diabetes. Canadian Journal of Physiology and Pharmacology, 2021, , .	0.7	0
78	New Therapeutic Options for Type 2 Diabetes Mellitus and Their Impact Against Ischemic Heart Disease. Frontiers in Physiology, 0, 13, .	1.3	0