Ulrich Simon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190800/publications.pdf

Version: 2024-02-01

175	11,434	47	103
papers	citations	h-index	g-index
176	176	176	17722 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Perovskite Catalyst for In-Cylinder Coating to Reduce Raw Pollutant Emissions of Internal Combustion Engines. ACS Omega, 2022, 7, 5340-5349.	1.6	9
2	The effects of oxygen pressure on the discharge performance of potassium–oxygen batteries. Sustainable Energy and Fuels, 2022, 6, 1992-2000.	2.5	3
3	A new musculoskeletal AnyBodyâ,,¢ detailed hand model. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 777-787.	0.9	11
4	DNA introduces an independent temperature responsiveness to thermosensitive microgels and enables switchable plasmon coupling as well as controlled uptake and release. Nanoscale, 2021, 13, 2875-2882.	2.8	4
5	Encapsulation of Au ₅₅ Clusters within Surface-Supported Metal–Organic Frameworks for Catalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2021, 4, 522-528.	2.4	15
6	Recent Understanding of Low-Temperature Copper Dynamics in Cu-Chabazite NH3-SCR Catalysts. Catalysts, 2021, 11, 52.	1.6	14
7	Simulating Metaphyseal Fracture Healing in the Distal Radius. Biomechanics, 2021, 1, 29-42.	0.5	5
8	Hand Motion Capture from a 3D Leap Motion Controller for a Musculoskeletal Dynamic Simulation. Sensors, 2021, 21, 1199.	2.1	11
9	PTFE Enhances Discharge Performance of Carbon Cathodes in Potassiumâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 1620.	2.4	3
10	Labelling via [Al18F]2+ Using Precomplexed Al-NODA Moieties. Pharmaceuticals, 2021, 14, 818.	1.7	4
11	Inhibition Effect of Phosphorus Poisoning on the Dynamics and Redox of Cu Active Sites in a Cu-SSZ-13 NH ₃ -SCR Catalyst for NO <i>_x</i> Reduction. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental &	4.6	43
12	Controlling microgel deformation <i>via</i> deposition method and surface functionalization of solid supports. Physical Chemistry Chemical Physics, 2021, 23, 4927-4934.	1.3	18
13	Anomalous Discharge Behavior of Graphite Nanosheet Electrodes in Lithium-Oxygen Batteries. Materials, 2020, 13, 43.	1.3	5
14	Elucidation of the Active Sites for Monodisperse FePt and Pt Nanocrystal Catalysts for p-WSe ₂ Photocathodes. Journal of Physical Chemistry C, 2020, 124, 11877-11885.	1.5	10
15	Optimizing Discharge Capacity of Graphite Nanosheet Electrodes for Lithium–Oxygen Batteries. Batteries, 2020, 6, 36.	2.1	3
16	Transport through Redox-Active Ru-Terpyridine Complexes Integrated in Single Nanoparticle Devices. Journal of Physical Chemistry C, 2020, 124, 4881-4889.	1.5	5
17	Integration of Individual Functionalized Gold Nanoparticles into Nanoelectrode Configurations: Recent Advances. European Journal of Inorganic Chemistry, 2020, 2020, 3798-3810.	1.0	2
18	Deformation of Microgels at Solid–Liquid Interfaces Visualized in Three-Dimension. Nano Letters, 2019, 19, 8862-8867.	4. 5	42

#	Article	IF	Citations
19	Tracking mobile active sites and intermediates in NH ₃ -SCR over zeolite catalysts by impedance-based <i>in situ</i> spectroscopy. Reaction Chemistry and Engineering, 2019, 4, 986-994.	1.9	16
20	Storage and Oxidation of Oxygen-Free and Oxygenated Hydrocarbons on a Pt–Pd Series Production Oxidation Catalyst. Topics in Catalysis, 2019, 62, 376-385.	1.3	6
21	Secondary-Phase Formation in Spinel-Type LiMn2O4-Cathode Materials for Lithium-Ion Batteries: Quantifying Trace Amounts of Li2MnO3 by Electron Paramagnetic Resonance Spectroscopy. Applied Magnetic Resonance, 2018, 49, 415-427.	0.6	14
22	Au Nanoparticles as Template for Defect Formation in Memristive SrTiO3 Thin Films. Nanomaterials, 2018, 8, 869.	1.9	9
23	Electrochemical and Electronic Charge Transport Properties of Ni-Doped LiMn2O4 Spinel Obtained from Polyol-Mediated Synthesis. Materials, 2018, 11, 806.	1.3	19
24	Simulating lateral distraction osteogenesis. PLoS ONE, 2018, 13, e0194500.	1.1	12
25	Influence of Synthesis, Dopants and Cycling Conditions on the Cycling Stability of Doped LiNi _{0.5} Mn _{1.5} O ₄ Spinels. Journal of the Electrochemical Society, 2017, 164, A6349-A6358.	1.3	17
26	Elucidation and Comparison of the Effect of LiTFSI and LiNO ₃ Salts on Discharge Chemistry in Nonaqueous Li–O ₂ Batteries. ACS Applied Materials & Discharge 19319-19325.	4.0	24
27	Easy-Preparable Butyrylcholinesterase/Microgel Construct for Facilitated Organophosphate Biosensing. Analytical Chemistry, 2017, 89, 6091-6098.	3.2	51
28	Influence of Polymer Architecture on the Electrochemical Deposition of Polyelectrolytes. Electrochimica Acta, 2017, 232, 98-105.	2.6	26
29	The effects of gold nanoparticles functionalized with ß -amyloid specific peptides on an in vitro model of blood–brain barrier. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1645-1652.	1.7	64
30	Experimental and Theoretical Understanding of Nitrogen-Doping-Induced Strong Metal–Support Interactions in Pd/TiO ₂ Catalysts for Nitrobenzene Hydrogenation. ACS Catalysis, 2017, 7, 1197-1206.	5.5	138
31	Construction of 6-thioguanine and 6-mercaptopurine carriers based on \hat{I}^2 cyclodextrins and gold nanoparticles. Carbohydrate Polymers, 2017, 177, 22-31.	5.1	25
32	Toxic effects and biodistribution of ultrasmall gold nanoparticles. Archives of Toxicology, 2017, 91, 3011-3037.	1.9	87
33	Resistive Switching of Sub-10 nm TiO2 Nanoparticle Self-Assembled Monolayers. Nanomaterials, 2017, 7, 370.	1.9	14
34	Single Interdigital Transducer Approach for Gravimetrical SAW Sensor Applications in Liquid Environments. Sensors, 2017, 17, 2931.	2.1	10
35	In Situ Spectroscopic Studies of Proton Transport in Zeolite Catalysts for NH3-SCR. Catalysts, 2016, 6, 204.	1.6	8
36	Molecular and Electronic Structure of the Cluster [Au ₈ (PPh ₃) ₈)(NO ₃) ₂ . European Journal of Inorganic Chemistry, 2016, 2016, 975-981.	1.0	9

#	Article	IF	Citations
37	The effect of Cu and Fe cations on NH3-supported proton transport in DeNOx-SCR zeolite catalysts. Catalysis Science and Technology, 2016, 6, 3362-3366.	2.1	32
38	Formation and Effect of NH ₄ ⁺ Intermediates in NH ₃ –SCR over Fe-ZSM-5 Zeolite Catalysts. ACS Catalysis, 2016, 6, 7696-7700.	5.5	68
39	3D Structures of Responsive Nanocompartmentalized Microgels. Nano Letters, 2016, 16, 7295-7301.	4.5	90
40	Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays. Macromolecular Rapid Communications, 2016, 37, 1446-1452.	2.0	14
41	Assessing the Intracellular Integrity of Phosphineâ€Stabilized Ultrasmall Cytotoxic Gold Nanoparticles Enabled by Fluorescence Labeling. Advanced Healthcare Materials, 2016, 5, 3118-3128.	3.9	6
42	Monitoring NH3 storage and conversion in Cu-ZSM-5 and Cu-SAPO-34 catalysts for NH3-SCR by simultaneous impedance and DRIFT spectroscopy. Sensors and Actuators B: Chemical, 2016, 236, 1075-1082.	4.0	24
43	Sensing catalytic conversion: Simultaneous DRIFT and impedance spectroscopy for in situ monitoring of NH3–SCR on zeolites. Sensors and Actuators B: Chemical, 2016, 224, 492-499.	4.0	21
44	Directed Self-Assembly and Infrared Reflection Absorption Spectroscopy Analysis of Amphiphilic and Zwitterionic Janus Gold Nanoparticles. Langmuir, 2016, 32, 954-962.	1.6	10
45	Ligand-lipid and ligand-core affinity control the interaction of gold nanoparticles with artificial lipid bilayers and cell membranes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1409-1419.	1.7	20
46	Shape without Structure: An Intriguing Formation Mechanism in the Solvothermal Synthesis of the Phaseâ€Change Material Sb ₂ Te ₃ . Angewandte Chemie - International Edition, 2015, 54, 6632-6636.	7.2	18
47	Resistive Switching of Individual, Chemically Synthesized TiO ₂ Nanoparticles. Small, 2015, 11, 6444-6456.	5.2	24
48	Correlating the Integral Sensing Properties of Zeolites with Molecular Processes by Combining Broadband Impedance and DRIFT Spectroscopy—A New Approach for Bridging the Scales. Sensors, 2015, 15, 28915-28941.	2.1	30
49	Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gramâ€Positive Staphylococci. Small, 2015, 11, 3183-3193.	5.2	72
50	Tuning neuron adhesion and neurite guiding using functionalized AuNPs and backfill chemistry. RSC Advances, 2015, 5, 39252-39262.	1.7	18
51	Probing Structural Dynamics of an Artificial Protein Cage Using High-Speed Atomic Force Microscopy. Nano Letters, 2015, 15, 1331-1335.	4.5	29
52	Solvothermally Synthesized Sb ₂ Te ₃ Platelets Show Unexpected Optical Contrasts in Mid-Infrared Near-Field Scanning Microscopy. Nano Letters, 2015, 15, 2787-2793.	4.5	23
53	Differential contrast of gold nanorods in dual-band OCT using spectral multiplexing. Journal of Nanoparticle Research, 2015, 17 , 1 .	0.8	8
54	Enhancement of capacitive deionization capacity of hierarchical porous carbon. Journal of Materials Chemistry A, 2015, 3, 12730-12737.	5.2	69

#	Article	IF	CITATIONS
55	Microgel Size Modulation by Electrochemical Switching. Chemistry of Materials, 2015, 27, 7306-7312.	3.2	61
56	Zirconium phosphate-based porous heterostructures: A new class of materials for ammonia sensing. Sensors and Actuators B: Chemical, 2015, 217, 175-180.	4.0	3
57	Numerical Simulation of Callus Healing for Optimization of Fracture Fixation Stiffness. PLoS ONE, 2014, 9, e101370.	1.1	47
58	Directed Immobilization of Janus-AuNP in Heterometallic Nanogaps: a Key Step Toward Integration of Functional Molecular Units in Nanoelectronics. Journal of Physical Chemistry C, 2014, 118, 27142-27149.	1.5	16
59	Disadvantages of interfragmentary shear on fracture healing—mechanical insights through numerical simulation. Journal of Orthopaedic Research, 2014, 32, 865-872.	1.2	51
60	Volume-doped cobalt titanates for ethanol sensing: An impedance and X-ray absorption spectroscopy study. Sensors and Actuators B: Chemical, 2014, 192, 60-69.	4.0	14
61	Differential Adsorption of Gold Nanoparticles to Gold/Palladium and Platinum Surfaces. Langmuir, 2014, 30, 574-583.	1.6	16
62	Air–Blood Barrier Translocation of Tracheally Instilled Gold Nanoparticles Inversely Depends on Particle Size. ACS Nano, 2014, 8, 222-233.	7.3	211
63	Challenging material patterning: Fine lithography on coarse substrates. Scanning, 2014, 36, 362-367.	0.7	0
64	Selective Packaging of Ferricyanide within Thermoresponsive Microgels. Journal of Physical Chemistry C, 2014, 118, 26199-26211.	1.5	38
65	Detection of the ammonia loading of a Cu Chabazite SCR catalyst by a radio frequency-based method. Sensors and Actuators B: Chemical, 2014, 205, 88-93.	4.0	39
66	Synthesis and Internal Structure of Finite-Size DNA–Gold Nanoparticle Assemblies. Journal of Physical Chemistry C, 2014, 118, 7174-7184.	1.5	14
67	Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors. Nanoscale, 2014, 6, 5146-5155.	2.8	27
68	Competing strain relaxation mechanisms in epitaxially grown Pr0.48Ca0.52MnO3 on SrTiO3. APL Materials, 2014, 2, 106106.	2.2	12
69	Bonding them all. Nature Materials, 2013, 12, 694-696.	13.3	18
70	In vivo nanotoxicity testing using the zebrafish embryo assay. Journal of Materials Chemistry B, 2013, 1, 3918.	2.9	104
71	Electrical Characterization of 4-Mercaptophenylamine-Capped Nanoparticles in a Heterometallic Nanoelectrode Gap. Journal of Physical Chemistry C, 2013, 117, 22002-22009.	1.5	10
72	Cellular uptake of fluorophore-labeled glyco-DNA–gold nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	1

#	Article	IF	CITATIONS
73	Features of Transport in Ultrathin Gold Nanowire Structures. Small, 2013, 9, 846-852.	5.2	44
74	Size- and Ligand-Specific Bioresponse of Gold Clusters and Nanoparticles: Challenges and Perspectives. Structure and Bonding, 2013, , 189-241.	1.0	8
75	[Au ₁₄ (PPh ₃) ₈ (NO ₃) ₄]: An Example of a New Class of Au(NO ₃)â€Ligated Superatom Complexes. Angewandte Chemie - International Edition, 2013, 52, 3529-3532.	7.2	84
76	Highâ€Sensitivity Realâ€Time Analysis of Nanoparticle Toxicity in Green Fluorescent Proteinâ€Expressing Zebrafish. Small, 2013, 9, 863-869.	5.2	47
77	A Missing Link in Undecagold Cluster Chemistry: Singleâ€Crystal Xâ€ray Analysis of [Au ₁₁ (PPh ₃) ₇ Cl ₃]. European Journal of Inorganic Chemistry, 2013, 2013, 2002-2006.	1.0	52
78	Dip-pen-based direct writing of conducting silver dots. Journal of Colloid and Interface Science, 2013, 406, 256-262.	5.0	11
79	Molecularly stabilised ultrasmall gold nanoparticles: synthesis, characterization and bioactivity. Nanoscale, 2013, 5, 6224.	2.8	82
80	Isolation, Optical Properties and Core Structure of a Water-soluble, Phosphine-stabilized [Au ₉] ³⁺ Cluster. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 569-574.	0.3	10
81	Differential hERG ion channel activity of ultrasmall gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8004-8009.	3.3	63
82	Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli. Journal of the Royal Society Interface, 2013, 10, 20130389.	1.5	42
83	High-throughput experimentation in resistive gas sensor materials development. Journal of Materials Research, 2013, 28, 574-588.	1.2	17
84	Spontaneous Assembly of Miktoarm Stars into Vesicular Interpolyelectrolyte Complexes. Macromolecular Rapid Communications, 2013, 34, 855-860.	2.0	48
85	Guided immobilisation of single gold nanoparticles by chemical electron beam lithography. Beilstein Journal of Nanotechnology, 2013, 4, 336-344.	1.5	8
86	Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles. Nanotechnology, 2012, 23, 225707.	1.3	24
87	Size dependent photoacoustic signal response of gold nanoparticles using a multispectral laser diode system. , 2012, , .		1
88	Covalent Cargo Loading to Molecular Shuttles via Copper-free "Click Chemistry― Biomacromolecules, 2012, 13, 3908-3911.	2.6	19
89	Electrically Conducting Nanopatterns Formed by Chemical e-Beam Lithography via Gold Nanoparticle Seeds. Langmuir, 2012, 28, 2448-2454.	1.6	22
90	Electrical Transport through Single Nanoparticles and Nanoparticle Arrays. Journal of Physical Chemistry C, 2012, 116, 20657-20665.	1.5	24

#	Article	IF	Citations
91	Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology, 2012, 6, 36-46.	1.6	313
92	Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNO _x -SCR. Beilstein Journal of Nanotechnology, 2012, 3, 667-673.	1.5	28
93	Control of Cell Adhesion and Neurite Outgrowth by Patterned Gold Nanoparticles with Tunable Attractive or Repulsive Surface Properties. Small, 2012, 8, 3357-3367.	5.2	30
94	Surface "Click―Reaction of DNA followed by Directed Metalization for the Construction of Contactable Conducting Nanostructures. Angewandte Chemie - International Edition, 2012, 51, 7586-7588.	7.2	26
95	Hierarchical Structures of Carbon Nanotubes and Arrays of Chromium apped Silicon Nanopillars: Formation and Electrical Properties. Chemistry - A European Journal, 2012, 18, 11614-11620.	1.7	2
96	Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 407-416.	2.0	493
97	Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sensors and Actuators B: Chemical, 2011, 160, 942-950.	4.0	39
98	Stepwise Thermal and Photothermal Dissociation of a Hierarchical Superaggregate of DNAâ€Functionalized Gold Nanoparticles. Small, 2011, 7, 1397-1402.	5.2	15
99	Glycoâ€DNA–Gold Nanoparticles: Lectinâ€Mediated Assembly and Dualâ€Stimuli Response. Small, 2011, 7, 1954-1960.	5.2	14
100	The Role of Oxidative Etching in the Synthesis of Ultrathin Singleâ€Crystalline Au Nanowires. Chemistry - A European Journal, 2011, 17, 9503-9507.	1.7	22
101	Electrical properties of surface functionalized silicon nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1367-1375.	0.8	14
102	NH ₃ -TPD measurements using a zeolite-based sensor. Measurement Science and Technology, 2010, 21, 027003.	1.4	25
103	Influence of the fixation stability on the healing time — A numerical study of a patient-specific fracture healing process. Clinical Biomechanics, 2010, 25, 606-612.	0.5	62
104	On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1405-1453.	1.6	230
105	Electronic transport properties of individual 4,4′-bis(mercaptoalkyl)-biphenyl derivatives measured in STM-based break junctions. Physical Chemistry Chemical Physics, 2010, 12, 10518.	1.3	10
106	Controlled Nucleation of DNA Metallization. Angewandte Chemie - International Edition, 2009, 48, 219-223.	7.2	116
107	A novel model to study metaphyseal bone healing under defined biomechanical conditions. Archives of Orthopaedic and Trauma Surgery, 2009, 129, 923-928.	1.3	38
108	Sulfonated poly(ether ether ketone)–silica membranes doped with phosphotungstic acid. Morphology and proton conductivity. Journal of Membrane Science, 2009, 326, 45-57.	4.1	67

#	Article	IF	CITATIONS
109	Quantised double layer charging of monolayer-protected clusters in a room temperature ionic liquid. Electrochimica Acta, 2009, 54, 5006-5010.	2.6	19
110	Fieldâ€Emission Resonances at Tip/ <i>α</i> , <i>ï%</i> â€Mercaptoalkyl Ferrocene/Au Interfaces Studied by STM. Small, 2009, 5, 496-502.	5.2	33
111	Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage. Small, 2009, 5, 2067-2076.	5.2	685
112	Photothermal Control of the Activity of HRPâ€Functionalized Gold Nanoparticles. Small, 2009, 5, 2549-2553.	5.2	32
113	Structural ordering of i‰-ferrocenylalkanethiol monolayers on Au(111) studied by scanning tunneling microscopy. Surface Science, 2009, 603, 716-722.	0.8	18
114	Preparation and Measurement of Combinatorial Screen Printed Libraries for the Electrochemical Analysis of Liquids. ACS Combinatorial Science, 2009, 11, 138-142.	3.3	6
115	Metal nanoparticle–DNA hybrids – from assembly towards functional conjugates. Journal of Materials Chemistry, 2009, 19, 1518.	6.7	25
116	Reversible Photothermal Melting of DNA in DNA–Goldâ€Nanoparticle Networks. Small, 2008, 4, 607-610.	5.2	62
117	An Easy Singleâ€Step Synthesis of Platinum Nanoparticles Embedded in Carbon. Chemistry - A European Journal, 2008, 14, 8776-8779.	1.7	4
118	Crystal Structure, Electrochemical and Optical Properties of [Au ₉ (PPh ₃) ₈](NO ₃) ₃ . European Journal of Inorganic Chemistry, 2008, 2008, 106-111.	1.0	127
119	Electrical and Optical Properties of Cetineite-Type Rb-, Sr-, and Ba-Oxoselenoantimonates(III). European Journal of Inorganic Chemistry, 2008, 2008, 369-372.	1.0	3
120	Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere. Sensors and Actuators B: Chemical, 2008, 134, 171-174.	4.0	40
121	Correlation of TPD and impedance measurements on the desorption of NH3 from zeolite H-ZSM-5. Solid State Ionics, 2008, 179, 1968-1973.	1.3	44
122	Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering. Physical Chemistry Chemical Physics, 2008, 10, 1870.	1.3	31
123	Multidentate thioether ligands coating gold nanoparticles. Chemical Communications, 2008, , 3438.	2.2	40
124	Analysis, manipulation, and simulation on the nanoscale. Physical Chemistry Chemical Physics, 2008, 10, 1841.	1.3	0
125	Chain-like assembly of gold nanoparticles on artificial DNA templates via †click chemistry'. Chemical Communications, 2008, , 169-171.	2.2	116
126	Striped Phase of Mercaptoalkylferrocenes on Au(111) with a Potential for Nanoscale Surface Patterning. Langmuir, 2008, 24, 4577-4580.	1.6	10

#	Article	IF	Citations
127	In-Situ Electrical Addressing of One-Dimensional Gold Nanoparticle Assemblies. Journal of Nanoscience and Nanotechnology, 2008, 8, 461-465.	0.9	11
128	Function follows form: shape complementarity and nanoparticle toxicity. Nanomedicine, 2008, 3, 601-603.	1.7	35
129	In situnanomanipulation system for electrical measurements in SEM. Measurement Science and Technology, 2007, 18, N84-N89.	1.4	28
130	Surface Chemistry of <i>n</i> -Octane Modified Silicon Nanoparticles Analyzed by IR, ¹³ C CPMAS NMR, EELS, and TGA. Journal of Nanoscience and Nanotechnology, 2007, 7, 2818-2822.	0.9	10
131	Ordered arrays of silicon pillars with controlled height and aspect ratio. Nanotechnology, 2007, 18, 305307.	1.3	33
132	Self Assembly of Mixed Monolayers of Mercaptoundecylferrocene and Undecanethiol studied by STM. Journal of Physics: Conference Series, 2007, 61, 852-855.	0.3	11
133	Low Loading Pt Cathode Catalysts for Direct Methanol Fuel Cell Derived from the Particle Size Effect. Chemistry of Materials, 2007, 19, 3370-3372.	3.2	25
134	Noble Gases Influence the Conductance of Cetineiteâ€Type Nanoporous Semiconductors. Angewandte Chemie - International Edition, 2007, 46, 6372-6375.	7.2	6
135	Scanning Tunneling Microscopy and Spectroscopy Studies of 4-Methyl- 4′-(n-mercaptoalkyl)biphenyls on Au(111)-(1×1). ChemPhysChem, 2007, 8, 1037-1048.	1.0	22
136	The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Applied Catalysis A: General, 2007, 328, 174-182.	2.2	312
137	High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites. Sensors and Actuators B: Chemical, 2007, 126, 181-186.	4.0	58
138	Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method. Sensors and Actuators B: Chemical, 2007, 126, 595-603.	4.0	65
139	Formation of Bimetallic Ag–Au Nanowires by Metallization of Artificial DNA Duplexes. Small, 2007, 3, 1049-1055.	5.2	106
140	Sizeâ€Dependent Cytotoxicity of Gold Nanoparticles. Small, 2007, 3, 1941-1949.	5.2	1,617
141	Honoring the scientific lifework of Gýnter Schmid on the occasion of his 70th birthday. Journal of Cluster Science, 2007, 18, 1-3.	1.7	0
142	Functionalization of silicon nanoparticles via hydrosilylation with 1-alkenes. Colloid and Polymer Science, 2007, 285, 729-736.	1.0	51
143	Advances in high throughput screening of gas sensing materials. Applied Surface Science, 2007, 254, 669-676.	3.1	27
144	DNA-Based Assembly of Metal Nanoparticles: Structure and Functionality. Nanoscience and Technology, 2007, , 263-282.	1.5	1

#	Article	IF	CITATIONS
145	Reactivity and Properties of [â°'Oâ°'BilllOMoâ°']nChains. Inorganic Chemistry, 2006, 45, 9020-9031.	1.9	22
146	Formation of electrically conducting DNA-assembled gold nanoparticle monolayers. Journal of Materials Chemistry, 2006, 16 , 1338 .	6.7	35
147	STM Study of Mixed Alkanethiol/Biphenylthiol Self-Assembled Monolayers on Au(111). Langmuir, 2006, 22, 3021-3027.	1.6	53
148	Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications. Sensors, 2006, 6, 1568-1586.	2.1	24
149	Workflow for High Throughput Screening of Gas Sensing Materials. Sensors, 2006, 6, 298-307.	2.1	26
150	Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?. Small, 2006, 2, 36-50.	5.2	1,238
151	Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?. Small, 2006, 2, 301-301.	5.2	847
152	Preparation and gas sensing properties of nanocrystalline La-doped CoTiO3. Sensors and Actuators B: Chemical, 2006, 120, 110-118.	4.0	56
153	Preparation, structural, and optical features of two-dimensional cross-linked DNA/gold-nanoparticle conjugates. Colloid and Polymer Science, 2006, 284, 1265-1273.	1.0	4
154	Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. Journal of Biomechanics, 2005, 38, 2440-2450.	0.9	131
155	Generation and Characterization of Multilayer Systems Consisting of Au55(PPh3)12Cl6 Double Layers and SiO2 Barrier Films. European Journal of Inorganic Chemistry, 2005, 2005, 3670-3678.	1.0	5
156	DNAâ€Based Assembly of Metal Nanoparticles. European Journal of Inorganic Chemistry, 2005, 2005, 3641-3655.	1.0	116
157	A Flexible Database for Combinatorial and High-Throughput Materials Science. QSAR and Combinatorial Science, 2005, 24, 22-28.	1.5	40
158	Transformation of nanoporous oxoselenoantimonates into Sb2O3—nanoribbons and nanorods. Chemical Communications, 2005, , 5790.	2.2	16
159	Preparation of Nanosized Perovskite-type Oxides via Polyol Method. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 2083-2089.	0.6	32
160	High-Throughput Method for the Impedance Spectroscopic Characterization of Resistive Gas Sensors. Angewandte Chemie - International Edition, 2004, 43, 752-754.	7.2	44
161	Solvate-Supported Proton Transport in Zeolites. ChemPhysChem, 2004, 5, 465-472.	1.0	95
162	Bifunctional DNA–gold nanoparticle conjugates as building blocks for the self-assembly of cross-linked particle layers. Biochemical and Biophysical Research Communications, 2003, 311, 995-999.	1.0	62

#	Article	IF	CITATIONS
163	Development and working principle of an ammonia gas sensor based on a refined model for solvate supported proton transport in zeolites. Physical Chemistry Chemical Physics, 2003, 5, 5195-5198.	1.3	84
164	Design Strategies for Multielectrode Arrays Applicable for High-Throughput Impedance Spectroscopy on Novel Gas Sensor Materials. ACS Combinatorial Science, 2002, 4, 511-515.	3.3	67
165	Translational proton motion in zeolite H-ZSM-5. Energy barriers and jump rates from DFT calculations. Physical Chemistry Chemical Physics, 2002, 4, 5207-5216.	1.3	71
166	Metal clusters in plasma polymer matrices. Physical Chemistry Chemical Physics, 2002, 4, 2438-2442.	1.3	13
167	Structure-Property Relations in Au55 Cluster Layers Studied by Temperature-Dependent Impedance Measurements. ChemPhysChem, 2001, 2, 321-325.	1.0	23
168	Transmission electron microscopic and small angle X-ray diffraction investigations of Au55(PPh3)12Cl6 microcrystalsâ€. Chemical Communications, 1999, , 1303-1304.	2.2	42
169	Charge Transport in Nanoparticle Arrangements. Advanced Materials, 1998, 10, 1487-1492.	11.1	158
170	Chemical tailoring of the charging energy in metal cluster arrangements by use of bifunctional spacer molecules. Journal of Materials Chemistry, 1998, 8, 517-518.	6.7	48
171	K3Sb7IIIO9Se3· 3 H2O: The First Crystalline Nanoporous Material with a Photo-Semiconducting Host Structure. Angewandte Chemie International Edition in English, 1997, 36, 1121-1124.	4.4	44
172	Oxygen ion conductivity of platinum-impregnated stabilized zirconia in bulk and microporous materials. Advanced Materials, 1996, 8, 424-427.	11.1	20
173	Impedanzspektroskopische Untersuchungen an Zeolithen mit eingelagerten Metallclustern. Chemie-Ingenieur-Technik, 1995, 67, 583-586.	0.4	8
174	The Application of Au55 Clusters as Quantum Dots. Angewandte Chemie International Edition in English, 1993, 32, 250-254.	4.4	132
175	A Model of the Potassium-Oxygen Battery and its Application in Cathode Design. Journal of the Electrochemical Society, 0, , .	1.3	0