Jesus Agulla Freire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190702/publications.pdf

Version: 2024-02-01

414414 430874 1,062 27 18 32 citations g-index h-index papers 34 34 34 1764 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: An experimental study. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1378-1386.	4.3	135
2	Iron-Related Brain Damage in Patients With Intracerebral Hemorrhage. Stroke, 2010, 41, 810-813.	2.0	102
3	In Vivo Theranostics at the Peri-Infarct Region in Cerebral Ischemia. Theranostics, 2014, 4, 90-105.	10.0	74
4	Toll-like receptors 7 and 8 expression is associated with poor outcome and greater inflammatory response in acute ischemic stroke. Clinical Immunology, 2011, 139, 193-198.	3.2	66
5	Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia. Journal of Cellular and Molecular Medicine, 2014, 18, 1571-1579.	3.6	64
6	Usefulness of haptoglobin and serum amyloid A proteins as biomarkers for atherothrombotic ischemic stroke diagnosis confirmation. Atherosclerosis, 2009, 205, 561-567.	0.8	59
7	Temporal profile and clinical significance of serum neuron-specific enolase and S100 in ischemic and hemorrhagic stroke. Clinical Chemistry and Laboratory Medicine, 2009, 47, 1513-8.	2.3	56
8	Brain Atrophy and the Risk of Futile Endovascular Reperfusion in Acute Ischemic Stroke. Stroke, 2020, 51, 1514-1521.	2.0	49
9	High Serum Levels of Growth Factors Are Associated with Good Outcome in Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1968-1974.	4.3	45
10	Glutamate Excitoxicity Is the Key Molecular Mechanism Which Is Influenced by Body Temperature during the Acute Phase of Brain Stroke. PLoS ONE, 2012, 7, e44191.	2.5	44
11	Amyloid-ß promotes neurotoxicity by Cdk5-induced p53 stabilization. Neuropharmacology, 2019, 146, 19-27.	4.1	40
12	Influence of temperature on ischemic brain: Basic and clinical principles. Neurochemistry International, 2012, 60, 495-505.	3.8	36
13	Serial MRI study of the enhanced therapeutic effects of liposome-encapsulated citicoline in cerebral ischemia. International Journal of Pharmaceutics, 2011, 405, 228-233.	5.2	35
14	Neovascularization and functional recovery after intracerebral hemorrhage is conditioned by the Tp53 Arg72Pro single-nucleotide polymorphism. Cell Death and Differentiation, 2017, 24, 144-154.	11.2	35
15	Cd34 ⁺ progenitor cells likely are involved in the good functional recovery after intracerebral hemorrhage in humans. Journal of Neuroscience Research, 2011, 89, 979-985.	2.9	29
16	The MDM2-p53 pathway is involved in preconditioning-induced neuronal tolerance to ischemia. Scientific Reports, 2018, 8, 1610.	3.3	26
17	Neuroprotective effect of neuroserpin in rat primary cortical cultures after oxygen and glucose deprivation and tPA. Neurochemistry International, 2011, 58, 337-343.	3.8	25
18	Neuroprotection afforded by antagonists of endothelin-1 receptors in experimental stroke. Neuropharmacology, 2012, 63, 1279-1285.	4.1	24

#	Article	IF	Citations
19	Single-Nucleotide Polymorphism <i>309T>G</i> in the <i>MDM2</i> Promoter Determines Functional Outcome After Stroke. Stroke, 2018, 49, 2437-2444.	2.0	16
20	Study of Protein Expresion in Peri-Infarct Tissue after Cerebral Ischemia. Scientific Reports, 2015, 5, 12030.	3.3	15
21	Review: Statins and stroke. Therapeutic Advances in Cardiovascular Disease, 2008, 2, 157-166.	2.1	14
22	Refocusing the Brain: New Approaches in Neuroprotection Against Ischemic Injury. Neurochemical Research, 2021, 46, 51-63.	3.3	13
23	GuÃa de recomendaciones en la aplicación de modelos animales para el estudio del ictus. NeurologÃa, 2011, 26, 105-110.	0.7	12
24	Quick adjustment of imaging tracer payload, for in vivo applications of theranostic nanostructures in the brain. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 851-858.	3.3	11
25	Nuclear WRAP53 promotes neuronal survival and functional recovery after stroke. Science Advances, 2020, 6, .	10.3	11
26	Amyloid- \hat{l}^2 Induces Cdh1-Mediated Rock2 Stabilization Causing Neurodegeneration. Frontiers in Pharmacology, 2022, 13, 884470.	3.5	9
27	Quantified ischemic core's radiological hypodensity and risk of parenchymal hematoma in > 4.5Âh-window stroke thrombectomy. Scientific Reports, 2020, 10, 16196.	3.3	1