
Michael R Nichols

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/219069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a Simple and Effective Lipid-A Antagonist Based on Computational Prediction. ACS Infectious Diseases, 2022, 8, 1171-1178.	3.8	1
2	Inhibition of matrix metalloproteinase-9 secretion by dimethyl sulfoxide and cyclic adenosine monophosphate in human monocytes. World Journal of Biological Chemistry, 2021, 12, 1-14.	4.3	2
3	The intricate biophysical puzzle of caspase-1 activation. Archives of Biochemistry and Biophysics, 2021, 699, 108753.	3.0	13
4	Expression of <scp>NLRP3</scp> inflammasome proteins in <scp>ExpiCHO </scp> mammalian cells reveals oligomerization properties that are highly sensitive to solution conditions. Biotechnology Progress, 2021, 37, e3153.	2.6	0
5	Disentangling aggregationâ€prone proteins: a new method for isolating αâ€synuclein species. Journal of Neurochemistry, 2020, 153, 7-9.	3.9	Ο
6	Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nature Medicine, 2020, 26, 131-142.	30.7	641
7	Inflammatory mechanisms in neurodegeneration. Journal of Neurochemistry, 2019, 149, 562-581.	3.9	85
8	Aβ42 Protofibrils Interact with and Are Trafficked through Microglial-Derived Microvesicles. ACS Chemical Neuroscience, 2018, 9, 1416-1425.	3.5	32
9	The conformational epitope for a new Aβ42 protofibrilâ€selective antibody partially overlaps with the peptide Nâ€ŧerminal region. Journal of Neurochemistry, 2017, 143, 736-749.	3.9	22
10	Aβ40 has a subtle effect on Aβ42 protofibril formation, but to a lesser degree than Aβ42 concentration, in Aβ42/Aβ40 mixtures. Archives of Biochemistry and Biophysics, 2016, 597, 1-11.	3.0	17
11	APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2016, 36, 8471-8486.	3.6	55
12	Amyloid-β42 protofibrils are internalized by microglia more extensively than monomers. Brain Research, 2016, 1648, 485-495.	2.2	26
13	Biophysical Comparison of Soluble Amyloid-β(1–42) Protofibrils, Oligomers, and Protofilaments. Biochemistry, 2015, 54, 2193-2204.	2.5	41
14	CD47 does not mediate amyloid-β(1–42) protofibril-stimulated microglial cytokine release. Biochemical and Biophysical Research Communications, 2014, 454, 239-244.	2.1	9
15	The influence of gold surface texture on microglia morphology and activation. Biomaterials Science, 2014, 2, 110-120.	5.4	26
16	Amyloid-β(1-42) protofibrils stimulate a quantum of secreted IL-1β despite significant intracellular IL-1β accumulation in microglia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2276-2285.	3.8	32
17	Amyloid-β(1–42) Protofibrils Formed in Modified Artificial Cerebrospinal Fluid Bind and Activate Microglia. Journal of NeuroImmune Pharmacology, 2013, 8, 312-322.	4.1	32
18	Stability of early-stage amyloid-β(1–42) aggregation species. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 65-70.	2.3	17

MICHAEL R NICHOLS

#	Article	IF	CITATIONS
19	A comparative first-principles study of structural and electronic properties among memantine, amantadine and rimantadine. Molecular Physics, 2012, 110, 685-689.	1.7	2
20	Introduction. Life Sciences, 2012, 91, 1140.	4.3	1
21	Isolated Amyloid-β(1–42) Protofibrils, But Not Isolated Fibrils, Are Robust Stimulators of Microglia. ACS Chemical Neuroscience, 2012, 3, 302-311.	3.5	62
22	Development of LPS antagonistic therapeutics: synthesis and evaluation of glucopyranoside-spacer-amino acid motifs. RSC Advances, 2011, 1, 83.	3.6	10
23	Substituted tryptophans at amyloid-β(1–40) residues 19 and 20 experience different environments after fibril formation. Archives of Biochemistry and Biophysics, 2011, 514, 27-32.	3.0	6
24	Special issue on Alzheimer's disease:. Life Sciences, 2011, 89, 288.	4.3	0
25	Probing the amyloid-β(1–40) fibril environment with substituted tryptophan residues. Archives of Biochemistry and Biophysics, 2010, 494, 192-197.	3.0	13
26	Oligomeric amyloid-β(1–42) induces THP-1 human monocyte adhesion and maturation. Brain Research, 2009, 1254, 109-119.	2.2	13
27	Amyloid-β(1â^'42) Fibrillar Precursors Are Optimal for Inducing Tumor Necrosis Factor-α Production in the THP-1 Human Monocytic Cell Line. Biochemistry, 2009, 48, 9011-9021.	2.5	19
28	Tollâ€like receptors 2 and 4 mediate Aβ(1–42) activation of the innate immune response in a human monocytic cell line. Journal of Neurochemistry, 2008, 104, 524-533.	3.9	146
29	Amyloid-β aggregates formed at polar-nonpolar interfaces differ from amyloid-β protofibrils produced in aqueous buffers. Microscopy Research and Technique, 2005, 67, 164-174.	2.2	34
30	Amyloid-β Protofibrils Differ from Amyloid-β Aggregates Induced in Dilute Hexafluoroisopropanol in Stability and Morphology. Journal of Biological Chemistry, 2005, 280, 2471-2480.	3.4	100
31	Rapid Assembly of Amyloid-β Peptide at a Liquid/Liquid Interface Produces Unstable β-Sheet Fibersâ€. Biochemistry, 2005, 44, 165-173.	2.5	40
32	The Peptide KLVFF-K6 Promotes β-Amyloid(1–40) Protofibril Growth by Association but Does Not Alter Protofibril Effects on Cellular Reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT). Molecular Pharmacology, 2003, 64, 1160-1168.	2.3	23
33	Growth of β-Amyloid(1â^'40) Protofibrils by Monomer Elongation and Lateral Association. Characterization of Distinct Products by Light Scattering and Atomic Force Microscopyâ€. Biochemistry, 2002, 41, 6115-6127.	2.5	180