Katherine R Storrs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190538/publications.pdf

Version: 2024-02-01

933264 752573 28 495 10 20 citations g-index h-index papers 29 29 29 452 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Face dissimilarity judgments are predicted by representational distance in morphable and image-computable models. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	14
2	FFA and OFA Encode Distinct Types of Face Identity Information. Journal of Neuroscience, 2021, 41, 1952-1969.	1.7	43
3	Learning About the World by Learning About Images. Current Directions in Psychological Science, 2021, 30, 120-128.	2.8	13
4	Unsupervised learning predicts human perception and misperception of gloss. Nature Human Behaviour, 2021, 5, 1402-1417.	6.2	42
5	Diverse Deep Neural Networks All Predict Human Inferior Temporal Cortex Well, After Training and Fitting. Journal of Cognitive Neuroscience, 2021, 33, 1-21.	1.1	43
6	How multisensory neurons solve causal inference. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
7	Facial similarity judgements are well predicted by image-computable DNNs and a statistical face distribution model. Journal of Vision, 2021, 21, 1900.	0.1	O
8	Learning to see material from motion by predicting videos. Journal of Vision, 2021, 21, 1993.	0.1	1
9	Modelling local and global explanations for shape aftereffects with naturalistic novel stimuli. Journal of Vision, 2021, 21, 2601.	0.1	O
10	Evolving visual representations from noise. Journal of Vision, 2021, 21, 2544.	0.1	0
11	Human judgments of relative 3D pose of novel complex objects. Journal of Vision, 2021, 21, 2873.	0.1	O
12	Material perception for philosophers. Philosophy Compass, 2021, 16, e12777.	0.7	1
13	A Model for Neural Network Modeling in Neuroscience. Journal of Neuroscience, 2020, 40, 7010-7012.	1.7	2
14	Distinct identity information encoded in FFA and OFA. Journal of Vision, 2020, 20, 536.	0.1	0
15	Learning to see stuff. Current Opinion in Behavioral Sciences, 2019, 30, 100-108.	2.0	45
16	Unsupervised Neural Networks Learn Idiosyncrasies of Human Gloss Perception. Journal of Vision, 2019, 19, 213.	0.1	0
17	Shape adaptation exaggerates shape differences Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 181-191.	0.7	10
18	Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments. Frontiers in Psychology, 2017, 8, 1726.	1.1	93

#	Article	IF	Citations
19	Grid Cells for Conceptual Spaces?. Neuron, 2016, 92, 280-284.	3.8	7
20	Extracting Object Identity: Ventral or Dorsal Visual Stream?. Journal of Neuroscience, 2016, 36, 6368-6370.	1.7	6
21	Do these lines look continuous?. Journal of Vision, 2016, 16, 307.	0.1	2
22	Facial Age Aftereffects Provide Some Evidence for Local Repulsion (But None for Re-Normalisation). I-Perception, 2015, 6, 100-103.	0.8	1
23	Are high-level aftereffects perceptual?. Frontiers in Psychology, 2015, 6, 157.	1.1	38
24	Loss of control stimulates approach motivation. Journal of Experimental Social Psychology, 2015, 56, 235-241.	1.3	52
25	Faces are repulsive: Gender and identity aftereffects involve local repulsion, not re-normalisation. Journal of Vision, 2015, 15, 1196.	0.1	0
26	Shape aftereffects reflect shape constancy operations: Appearance matters Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 616-622.	0.7	6
27	Sociality of facial expressions in immersive virtual environments: A facial EMG study. Biological Psychology, 2012, 91, 17-21.	1.1	16
28	Not all face aftereffects are equal. Vision Research, 2012, 64, 7-16.	0.7	30