Brendan A C Harley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/219043/publications.pdf

Version: 2024-02-01

145 papers

7,390 citations

57719 44 h-index 79 g-index

182 all docs

182 docs citations

182 times ranked

8232 citing authors

#	Article	IF	CITATIONS
1	Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials, 2004, 25, 1077-1086.	5.7	647
2	Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nature Cell Biology, 2013, 15, 533-543.	4.6	461
3	Mechanical characterization of collagen–glycosaminoglycan scaffolds. Acta Biomaterialia, 2007, 3, 463-474.	4.1	343
4	Microarchitecture of Three-Dimensional Scaffolds Influences Cell Migration Behavior via Junction Interactions. Biophysical Journal, 2008, 95, 4013-4024.	0.2	313
5	The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technology and Health Care, 2006, 15, 3-17.	0.5	286
6	A Collagen-glycosaminoglycan Scaffold Supports Adult Rat Mesenchymal Stem Cell Differentiation Along Osteogenic and Chondrogenic Routes. Tissue Engineering, 2006, 12, 459-468.	4.9	209
7	The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity. Biomaterials, 2011, 32, 5330-5340.	5.7	200
8	Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials, 2013, 34, 7408-7417.	5.7	134
9	The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering. Biomaterials, 2011, 32, 8990-8998.	5.7	127
10	Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1078-1093.	2.1	121
11	Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique. Biomaterials, 2006, 27, 866-874.	5 . 7	115
12	Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells. Science Advances, 2017, 3, e1600455.	4.7	111
13	The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials, 2012, 33, 4460-4468.	5.7	105
14	Spatially Gradated Hydrogel Platform as a 3D Engineered Tumor Microenvironment. Advanced Materials, 2015, 27, 1567-1572.	11.1	105
15	The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technology and Health Care, 2007, 15, 3-17.	0.5	100
16	Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. Journal of Biomedical Materials Research - Part A, 2013, 101, 3404-3415.	2.1	99
17	Microfluidic Generation of Gradient Hydrogels to Modulate Hematopoietic Stem Cell Culture Environment. Advanced Healthcare Materials, 2014, 3, 449-458.	3.9	94
18	The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials, 2015, 67, 297-307.	5.7	94

#	Article	lF	CITATIONS
19	Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen–glycosaminoglycan scaffold. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1066-1077.	2.1	92
20	Structural and Biochemical Modification of a Collagen Scaffold to Selectively Enhance MSC Tenogenic, Chondrogenic, and Osteogenic Differentiation. Advanced Healthcare Materials, 2014, 3, 1086-1096.	3.9	90
21	The Combined Influence of Hydrogel Stiffness and Matrixâ€Bound Hyaluronic Acid Content on Glioblastoma Invasion. Macromolecular Bioscience, 2017, 17, 1700018.	2.1	86
22	Photonic crystal enhanced microscopy for imaging of live cell adhesion. Analyst, The, 2013, 138, 5886.	1.7	82
23	Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnology Journal, 2015, 10, 1529-1545.	1.8	81
24	In vivo and in vitro applications of collagen-GAG scaffolds. Chemical Engineering Journal, 2008, 137, 102-121.	6.6	80
25	Nanoparticulate mineralized collagen scaffolds induce inÂvivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation. Biomaterials, 2016, 89, 67-78.	5.7	80
26	Mineralized collagen scaffolds induce hMSC osteogenesis and matrix remodeling. Biomaterials Science, 2015, 3, 533-542.	2.6	76
27	Influence of Hyaluronic Acid Transitions in Tumor Microenvironment on Glioblastoma Malignancy and Invasive Behavior. Frontiers in Materials, 2018, 5, .	1.2	74
28	Osteogenesis on nanoparticulate mineralized collagen scaffolds via autogenous activation of the canonical BMP receptor signaling pathway. Biomaterials, 2015, 50, 107-114.	5.7	73
29	The influence of collagen–glycosaminoglycan scaffold relative density and microstructural anisotropy on tenocyte bioactivity and transcriptomic stability. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 27-40.	1.5	72
30	The generation of biomolecular patterns in highly porous collagen-GAG scaffolds using direct photolithography. Biomaterials, 2011, 32, 3949-3957.	5.7	71
31	The use of bioinspired alterations in the glycosaminoglycan content of collagen–GAG scaffolds to regulate cell activity. Biomaterials, 2013, 34, 7645-7652.	5.7	69
32	Composite Growth Factor Supplementation Strategies to Enhance Tenocyte Bioactivity in Aligned Collagen-GAG Scaffolds. Tissue Engineering - Part A, 2013, 19, 1100-1112.	1.6	67
33	The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications. Acta Biomaterialia, 2019, 93, 86-96.	4.1	65
34	The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells. Biomaterials, 2014, 35, 8951-8959.	5.7	64
35	Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomaterialia, 2016, 33, 25-33.	4.1	63
36	A New Technique for Calculating Individual Dermal Fibroblast Contractile Forces Generated within Collagen-GAG Scaffolds. Biophysical Journal, 2007, 93, 2911-2922.	0.2	61

#	Article	IF	CITATIONS
37	The Influence of Hyaluronic Acid and Glioblastoma Cell Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels. Advanced Healthcare Materials, 2017, 6, 1700687.	3.9	58
38	Collagen Scaffolds Incorporating Coincident Gradations of Instructive Structural and Biochemical Cues for Osteotendinous Junction Engineering. Advanced Healthcare Materials, 2015, 4, 831-837.	3.9	54
39	A gelatin hydrogel to study endometrial angiogenesis and trophoblast invasion. Interface Focus, 2019, 9, 20190016.	1.5	54
40	Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships. Science Advances, 2021, 7, .	4.7	54
41	Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials, 2017, 125, 54-64.	5.7	53
42	Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel. Biomaterials, 2019, 198, 122-134.	5.7	53
43	SOCS3 Protein Developmentally Regulates the Chemokine Receptor CXCR4-FAK Signaling Pathway during B Lymphopoiesis. Immunity, 2007, 27, 811-823.	6.6	49
44	Design of a multiphase osteochondral scaffold. I. Control of chemical composition. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1057-1065.	2.1	49
45	Nanoparticulate Mineralized Collagen Scaffolds and BMPâ€9 Induce a Longâ€Term Bone Cartilage Construct in Human Mesenchymal Stem Cells. Advanced Healthcare Materials, 2016, 5, 1821-1830.	3.9	49
46	Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds. Journal of Biomedical Materials Research - Part A, 2016, 104, 1332-1342.	2.1	49
47	Hypoxia activates enhanced invasive potential and endogenous hyaluronic acid production by glioblastoma cells. Biomaterials Science, 2018, 6, 854-862.	2.6	47
48	Osteoprotegerin reduces osteoclast resorption activity without affecting osteogenesis on nanoparticulate mineralized collagen scaffolds. Science Advances, 2019, 5, eaaw4991.	4.7	46
49	Evaluation of multi-scale mineralized collagen–polycaprolactone composites for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 318-327.	1.5	45
50	Focal Adhesion Kinase Regulates the Localization and Retention of Pro-B Cells in Bone Marrow Microenvironments. Journal of Immunology, 2013, 190, 1094-1102.	0.4	44
51	Optimizing Collagen Scaffolds for Bone Engineering. Journal of Craniofacial Surgery, 2015, 26, 1992-1996.	0.3	44
52	The impact of discrete compartments of a multi-compartment collagen–GAG scaffold on overall construct biophysical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 26-36.	1.5	43
53	The influence of pore size and stiffness on tenocyte bioactivity and transcriptomic stability in collagen-GAG scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 295-305.	1.5	43
54	Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy. Analyst, The, 2014, 139, 5954-5963.	1.7	42

#	Article	IF	CITATIONS
55	Extracellular Hyaluronic Acid Influences the Efficacy of EGFR Tyrosine Kinase Inhibitors in a Biomaterial Model of Glioblastoma. Advanced Healthcare Materials, 2017, 6, 1700529.	3.9	41
56	Incorporation of the Amniotic Membrane as an Immunomodulatory Design Element in Collagen Scaffolds for Tendon Repair. ACS Biomaterials Science and Engineering, 2018, 4, 4367-4377.	2.6	41
57	Soluble Signals and Remodeling in a Synthetic Gelatinâ€Based Hematopoietic Stem Cell Niche. Advanced Healthcare Materials, 2019, 8, e1900751.	3.9	40
58	Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces. Science Advances, 2020, 6, eabb6763.	4.7	40
59	Naturally derived biomaterials for addressing inflammation in tissue regeneration. Experimental Biology and Medicine, 2016, 241, 1015-1024.	1.1	39
60	Photopatterning of vascular endothelial growth factor within collagen-glycosaminoglycan scaffolds can induce a spatially confined response in human umbilical vein endothelial cells. Acta Biomaterialia, 2014, 10, 4715-4722.	4.1	38
61	Characterizing Glioblastoma Heterogeneity via Single-Cell Receptor Quantification. Frontiers in Bioengineering and Biotechnology, 2018, 6, 92.	2.0	37
62	Shape-fitting collagen-PLA composite promotes osteogenic differentiation of porcine adipose stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95, 21-33.	1.5	37
63	Relationship between permeability and diffusivity in polyethylene glycol hydrogels. AIP Advances, 2018, 8, 105006.	0.6	36
64	Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens. Biomaterials, 2019, 219, 119371.	5.7	34
65	Angiogenic biomaterials to promote therapeutic regeneration and investigate disease progression. Biomaterials, 2020, 255, 120207.	5.7	34
66	Rheological Analysis of the Gelation Kinetics of an Enzyme Cross-linked PEG Hydrogel. Biomacromolecules, 2019, 20, 2198-2206.	2.6	32
67	Threeâ€dimensional tissue cytometer based on highâ€speed multiphoton microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 991-1002.	1.1	31
68	Collagen-GAG Scaffold Biophysical Properties Bias MSC Lineage Choice in the Presence of Mixed Soluble Signals. Tissue Engineering - Part A, 2014, 20, 2463-2472.	1.6	31
69	Identifying States along the Hematopoietic Stem Cell Differentiation Hierarchy with Single Cell Specificity via Raman Spectroscopy. Analytical Chemistry, 2015, 87, 11317-11324.	3.2	31
70	Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness. Biomacromolecules, 2017, 18, 1393-1400.	2.6	30
71	Nanoparticulate mineralized collagen glycosaminoglycan materials directly and indirectly inhibit osteoclastogenesis and osteoclast activation. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 823-834.	1.3	30
72	Inclusion of a 3D-printed Hyperelastic Bone mesh improves mechanical and osteogenic performance of a mineralized collagen scaffold. Acta Biomaterialia, 2021, 121, 224-236.	4.1	30

#	Article	IF	CITATIONS
73	Incorporating \hat{l}^2 -cyclodextrin into collagen scaffolds to sequester growth factors and modulate mesenchymal stem cell activity. Acta Biomaterialia, 2018, 76, 116-125.	4.1	29
74	Modifying the strength and strain concentration profile within collagen scaffolds using customizable arrays of poly-lactic acid fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 28-36.	1.5	27
75	The promotion of HL-1 cardiomyocyte beating using anisotropic collagen-GAG scaffolds. Biomaterials, 2012, 33, 8812-8821.	5.7	25
76	Nonmineralized and Mineralized Collagen Scaffolds Induce Differential Osteogenic Signaling Pathways in Human Mesenchymal Stem Cells. Advanced Healthcare Materials, 2017, 6, 1700641.	3.9	24
77	Stiffness of Nanoparticulate Mineralized Collagen Scaffolds Triggers Osteogenesis via Mechanotransduction and Canonical Wnt Signaling. Macromolecular Bioscience, 2021, 21, e2000370.	2.1	24
78	The induction of proâ€angiogenic processes within a collagen scaffold via exogenous estradiol and endometrial epithelial cells. Biotechnology and Bioengineering, 2015, 112, 2185-2194.	1.7	23
79	A Mineralized Collagen-Polycaprolactone Composite Promotes Healing of a Porcine Mandibular Defect. Tissue Engineering - Part A, 2018, 24, 943-954.	1.6	23
80	Mineralized collagen scaffolds fabricated with amniotic membrane matrix increase osteogenesis under inflammatory conditions. International Journal of Energy Production and Management, 2020, 7, 247-258.	1.9	23
81	Anisotropic mineralized collagen scaffolds accelerate osteogenic response in a glycosaminoglycan-dependent fashion. RSC Advances, 2020, 10, 15629-15641.	1.7	23
82	Heterotypic tumor models through freeform printing into photostabilized granular microgels. Biomaterials Science, 2021, 9, 4496-4509.	2.6	23
83	Identifying Differentiation Stage of Individual Primary Hematopoietic Cells from Mouse Bone Marrow by Multivariate Analysis of TOF-Secondary Ion Mass Spectrometry Data. Analytical Chemistry, 2012, 84, 4307-4313.	3.2	22
84	The Effect of Gradations in Mineral Content, Matrix Alignment, and Applied Strain on Human Mesenchymal Stem Cell Morphology within Collagen Biomaterials. Advanced Healthcare Materials, 2016, 5, 1731-1739.	3.9	22
85	Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics. MRS Communications, 2017, 7, 442-449.	0.8	22
86	Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Advances, 2021, 11, 17809-17827.	1.7	22
87	The influence of cyclic tensile strain on multi-compartment collagen-GAG scaffolds for tendon-bone junction repair. Connective Tissue Research, 2019, 60, 530-543.	1.1	21
88	Crosstalk between microglia and patient-derived glioblastoma cells inhibit invasion in a three-dimensional gelatin hydrogel model. Journal of Neuroinflammation, 2020, 17, 346.	3.1	21
89	Nanoscale mechanics guides cellular decision making. Integrative Biology (United Kingdom), 2016, 8, 929-935.	0.6	20
90	Quantitative analysis of focal adhesion dynamics using photonic resonator outcoupler microscopy (PROM). Light: Science and Applications, 2018, 7, .	7.7	20

#	Article	IF	CITATIONS
91	Encapsulation of murine hematopoietic stem and progenitor cells in a thiol-crosslinked maleimide-functionalized gelatin hydrogel. Acta Biomaterialia, 2021, 131, 138-148.	4.1	20
92	Challenges and Opportunities to Harnessing the (Hematopoietic) Stem Cell Niche. Current Stem Cell Reports, 2016, 2, 85-94.	0.7	19
93	Multidimensional hydrogel models reveal endothelial network angiocrine signals increase glioblastoma cell number, invasion, and temozolomide resistance. Integrative Biology (United) Tj ETQq1 1 0.7843	81 4. &BT /	Overlock 10
94	Tunable, Photoreactive Hydrogel System To Probe Synergies between Mechanical and Biomolecular Cues on Adipose-Derived Mesenchymal Stem Cell Differentiation. ACS Biomaterials Science and Engineering, 2015, 1, 718-725.	2.6	18
95	Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold. Annals of Biomedical Engineering, 2015, 43, 2618-2629.	1.3	18
96	The effect of glycosaminoglycan content on polyethylenimine-based gene delivery within three-dimensional collagen-GAG scaffolds. Biomaterials Science, 2015, 3, 645-654.	2.6	16
97	Collagen Scaffold Arrays for Combinatorial Screening of Biophysical and Biochemical Regulators of Cell Behavior. Advanced Healthcare Materials, 2015, 4, 58-64.	3.9	16
98	Tracing Hematopoietic Progenitor Cell Neutrophilic Differentiation via Raman Spectroscopy. Bioconjugate Chemistry, 2018, 29, 3121-3128.	1.8	16
99	Response of neuroglia to hypoxia-induced oxidative stress using enzymatically crosslinked hydrogels. MRS Communications, 2020, 10, 83-90.	0.8	16
100	Perivascular Secretome Influences Hematopoietic Stem Cell Maintenance in a Gelatin Hydrogel. Annals of Biomedical Engineering, 2021, 49, 780-792.	1.3	16
101	Planar Photonic Crystal Biosensor for Quantitative Labelâ€Free Cell Attachment Microscopy. Advanced Optical Materials, 2015, 3, 1623-1632.	3.6	15
102	Award Winner in the Young Investigator Category, 2014 Society for Biomaterials Annual Meeting and Exposition, Denver, Colorado, April 16–19, 2014: Periodically perforated core–shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties. Journal of Biomedical Materials Research - Part A, 2014, 102, 917-927.	2.1	13
103	A computational model of feedback-mediated hematopoietic stem cell differentiation in vitro. PLoS ONE, 2019, 14, e0212502.	1.1	13
104	Sequential sequestrations increase the incorporation and retention of multiple growth factors in mineralized collagen scaffolds. RSC Advances, 2020, 10, 26982-26996.	1.7	12
105	Tuning Trophoblast Motility in a Gelatin Hydrogel via Soluble Cues from the Maternal–Fetal Interface. Tissue Engineering - Part A, 2021, 27, 1064-1073.	1.6	12
106	Connecting secretome to hematopoietic stem cell phenotype shifts in an engineered bone marrow niche. Integrative Biology (United Kingdom), 2020, 12, 175-187.	0.6	12
107	Repair of critical-size porcine craniofacial bone defects using a collagen–polycaprolactone composite biomaterial. Biofabrication, 2022, 14, 014102.	3.7	12
108	Quantitative imaging of cell membrane-associated effective mass density using Photonic Crystal Enhanced Microscopy (PCEM). Progress in Quantum Electronics, 2016, 50, 1-18.	3.5	11

#	Article	IF	Citations
109	Glycosaminoglycan content of a mineralized collagen scaffold promotes mesenchymal stem cell secretion of factors to modulate angiogenesis and monocyte differentiation. Materialia, 2021, 18, 101149.	1.3	11
110	<i>·î·Î²â€Catenin Limits Osteogenesis on Regenerative Materials in a Stiffnessâ€Dependent Manner. Advanced Healthcare Materials, 2021, 10, e2101467.</i>	3.9	11
111	Strategies to balance covalent and non-covalent biomolecule attachment within collagen-GAG biomaterials. Biomaterials Science, 2014, 2, 1296-1304.	2.6	10
112	Proangiogenic Activity of Endometrial Epithelial and Stromal Cells in Response to Estradiol in Gelatin Hydrogels. Advanced Biology, 2017, 1, 1700056.	3.0	9
113	The Feasibility of Encapsulated Embryonic Medullary Reticular Cells to Grow and Differentiate Into Neurons in Functionalized Gelatin-Based Hydrogels. Frontiers in Materials, 2018, 5, .	1.2	9
114	Progress in mimicking brain microenvironments to understand and treat neurological disorders. APL Bioengineering, 2021, 5, 020902.	3.3	9
115	Effects of Pregnancy-Specific Glycoproteins on Trophoblast Motility in Three-Dimensional Gelatin Hydrogels. Cellular and Molecular Bioengineering, 2022, 15, 175-191.	1.0	8
116	In Vivo Synthesis of Tissues and Organs. , 2014, , 325-355.		7
117	Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Advanced Healthcare Materials, 2022, 11, e2102130.	3.9	7
118	Visualizing Intrapopulation Hematopoietic Cell Heterogeneity with Self-Organizing Maps of SIMS Data. Tissue Engineering - Part C: Methods, 2018, 24, 322-330.	1.1	6
119	Special Issue on Tissue Engineering for Women's Health. Tissue Engineering - Part A, 2020, 26, 685-687.	1.6	6
120	Benzophenone-Based Photochemical Micropatterning of Biomolecules to Create Model Substrates and Instructive Biomaterials. Methods in Cell Biology, 2014, 121, 231-242.	0.5	5
121	Hydrogels Containing Gradients in Vascular Density Reveal Doseâ€Dependent Role of Angiocrine Cues on Stem Cell Behavior. Advanced Functional Materials, 2021, 31, 2101541.	7.8	5
122	Cellâ€Laden Hydrogels in Integrated Microfluidic Devices for Longâ€Term Cell Culture and Tubulogenesis Assays. Small, 2013, 9, 3076-3081.	5.2	4
123	CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche. Cell and Tissue Research, 2015, 362, 633-642.	1.5	4
124	In Vivo Synthesis of Tissues and Organs. , 2007, , 219-238.		3
125	Editorial: Biomaterials for Brain Therapy and Repair. Frontiers in Materials, 2018, 5, .	1.2	3
126	Tuning trophoblast motility in a gelatin hydrogel via soluble cues from the maternal-fetal interface. Tissue Engineering - Part A, 2020, , .	1.6	3

#	Article	IF	CITATIONS
127	Matrix Hyaluronic Acid and Hypoxia Influence a CD133 ⁺ Subset of Patient-Derived Glioblastoma Cells. Tissue Engineering - Part A, 2022, 28, 330-340.	1.6	3
128	Biomaterial Scaffolds for Tendon Tissue Engineering. , 2015, , 349-380.		2
129	Special issue on Gradients in Biomaterials. Acta Biomaterialia, 2017, 56, 1-2.	4.1	2
130	Development of an inexpensive Raman-compatible substrate for the construction of a microarray screening platform. Analyst, The, 2020, 145, 7030-7039.	1.7	2
131	Microphysiological systems to study tumor-stroma interactions in brain cancer. Brain Research Bulletin, 2021, 174, 220-229.	1.4	2
132	Label-free Imaging of Stem Cell Adhesion and Dynamic Tracking of Boundary Evolution Using Photonic Crystal Enhanced Microscopy (PCEM). Microscopy and Microanalysis, 2017, 23, 1142-1143.	0.2	1
133	Dynamic Label-free Imaging of Live-cell Adhesion Using Photonic Crystal Enhanced Microscopy (PCEM). , 2015, , .		1
134	CHCHD2 Knockout Alters Mitochondrial Metabolism, Increases Sensitivity to Sulfasalazine, and Decreases Proliferation and Invasive Potential of Glioblastoma Cells Expressing EGFRvIII. FASEB Journal, 2018, 32, 40.9.	0.2	1
135	Patterning Anisotropic Collagen Scaffolds for Tendon Insertion Regeneration. , 2012, , .		O
136	Hydrogels: Spatially Gradated Hydrogel Platform as a 3D Engineered Tumor Microenvironment (Adv.) Tj ETQq0 C	0 0 rgBT /0	Overlock 10 Tf
			· ·
137	Macromol. Biosci. 8/2017. Macromolecular Bioscience, 2017, 17, .	2.1	0
137	Macromol. Biosci. 8/2017. Macromolecular Bioscience, 2017, 17, . Spatial Analysis of Hematopoietic Stem and Progenitor Cells in the Bone Marrow. Blood, 2008, 112, 3570-3570.	2.1	0
	Spatial Analysis of Hematopoietic Stem and Progenitor Cells in the Bone Marrow. Blood, 2008, 112,		
138	Spatial Analysis of Hematopoietic Stem and Progenitor Cells in the Bone Marrow. Blood, 2008, 112, 3570-3570. Quantitative Imaging of Femoral Bone Marrow Microenvironments Reveals a Heterogenous	0.6	0
138 139	Spatial Analysis of Hematopoietic Stem and Progenitor Cells in the Bone Marrow. Blood, 2008, 112, 3570-3570. Quantitative Imaging of Femoral Bone Marrow Microenvironments Reveals a Heterogenous Distribution of Hematopoietic Stem and Progenitor Cells Blood, 2009, 114, 1455-1455. Hypoxic Hematopoietic Stem and Progenitor Cells Reside in Structurally Diverse Perivascular Niches	0.6	0
138 139 140	Spatial Analysis of Hematopoietic Stem and Progenitor Cells in the Bone Marrow. Blood, 2008, 112, 3570-3570. Quantitative Imaging of Femoral Bone Marrow Microenvironments Reveals a Heterogenous Distribution of Hematopoietic Stem and Progenitor Cells Blood, 2009, 114, 1455-1455. Hypoxic Hematopoietic Stem and Progenitor Cells Reside in Structurally Diverse Perivascular Niches in the Bone Marrow,. Blood, 2011, 118, 3417-3417.	0.6 0.6 0.6	0 0
138 139 140	Spatial Analysis of Hematopoietic Stem and Progenitor Cells in the Bone Marrow. Blood, 2008, 112, 3570-3570. Quantitative Imaging of Femoral Bone Marrow Microenvironments Reveals a Heterogenous Distribution of Hematopoietic Stem and Progenitor Cells Blood, 2009, 114, 1455-1455. Hypoxic Hematopoietic Stem and Progenitor Cells Reside in Structurally Diverse Perivascular Niches in the Bone Marrow,. Blood, 2011, 118, 3417-3417. Identification of the Differentiation Status of Individual Hematopoietic Cells from Mouse Bone Marrow using Secondary Ion Mass Spectrometry. FASEB Journal, 2012, 26, 579.5.	0.6 0.6 0.6	0 0 0

#	Article	IF	CITATIONS
145	Quantitative Label-free Imaging of Live-cell Adhesion Using Photonic Crystal Enhanced Microscopy (PCEM)., 2017,,.		O