Paola Sperandeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Analysis of the Protein Machinery Required for Transport of Lipopolysaccharide to the Outer Membrane of <i>Escherichia coli</i> . Journal of Bacteriology, 2008, 190, 4460-4469.	2.2	218
2	Characterization of lptA and lptB , Two Essential Genes Implicated in Lipopolysaccharide Transport to the Outer Membrane of Escherichia coli. Journal of Bacteriology, 2007, 189, 244-253.	2.2	212
3	Novel Structure of the Conserved Gram-Negative Lipopolysaccharide Transport Protein A and Mutagenesis Analysis. Journal of Molecular Biology, 2008, 380, 476-488.	4.2	144
4	The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains. Journal of Bacteriology, 2013, 195, 1100-1108.	2.2	90
5	New Insights into the Lpt Machinery for Lipopolysaccharide Transport to the Cell Surface: LptA-LptC Interaction and LptA Stability as Sensors of a Properly Assembled Transenvelope Complex. Journal of Bacteriology, 2011, 193, 1042-1053.	2.2	86
6	Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the Escherichia coli yrbG–yhbG locus. Research in Microbiology, 2006, 157, 547-558.	2.1	83
7	The lipopolysaccharide transport (Lpt) machinery: A nonconventional transporter for lipopolysaccharide assembly at the outer membrane of Gram-negative bacteria. Journal of Biological Chemistry, 2017, 292, 17981-17990.	3.4	66
8	The Lipopolysaccharide Export Pathway in Escherichia coli: Structure, Organization and Regulated Assembly of the Lpt Machinery. Marine Drugs, 2014, 12, 1023-1042.	4.6	41
9	Thanatin Impairs Lipopolysaccharide Transport Complex Assembly by Targeting LptC–LptA Interaction and Decreasing LptA Stability. Frontiers in Microbiology, 2020, 11, 909.	3.5	38
10	Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics. PLoS ONE, 2014, 9, e100941.	2.5	36
11	Crystal structure of LptH, the periplasmic component of the lipopolysaccharide transport machinery from <i>PseudomonasÂaeruginosa</i> . FEBS Journal, 2015, 282, 1980-1997.	4.7	31
12	LptA Assembles into Rod-Like Oligomers Involving Disorder-to-Order Transitions. Journal of the American Society for Mass Spectrometry, 2013, 24, 1593-1602.	2.8	29
13	Targeting Bacterial Membranes: NMR Spectroscopy Characterization of Substrate Recognition and Binding Requirements of <scp>D</scp> â€Arabinoseâ€5â€Phosphate Isomerase. Chemistry - A European Journal, 2010, 16, 1897-1902.	3.3	27
14	Leptin, Resistin, and Proprotein Convertase Subtilisin/Kexin Type 9. American Journal of Pathology, 2020, 190, 2226-2236.	3.8	26
15	The Kdo Biosynthetic Pathway Toward OM Biogenesis as Target in Antibacterial Drug Design and Development. Current Drug Discovery Technologies, 2009, 6, 19-33.	1.2	24
16	Targeting Bacterial Membranes: Identification of <i>Pseudomonas aeruginosa</i> <scp>D</scp> â€Arabinoseâ€5P Isomerase and NMR Characterisation of its Substrate Recognition and Binding Properties. ChemBioChem, 2011, 12, 719-727.	2.6	24
17	Novel photo-thermally active polyvinyl alcohol-Prussian blue nanoparticles hydrogel films capable of eradicating bacteria and mitigating biofilms. Nanotechnology, 2019, 30, 295702.	2.6	22
18	Covalent Grafting of Antimicrobial Peptides onto Microcrystalline Cellulose. ACS Applied Bio Materials, 2020, 3, 4895-4901.	4.6	22

PAOLA SPERANDEO

#	Article	IF	CITATIONS
19	Probing the active site of the sugar isomerase domain from <i>E. coli</i> arabinoseâ€5â€phosphate isomerase via Xâ€ray crystallography. Protein Science, 2010, 19, 2430-2439.	7.6	19
20	Complex transcriptional organization regulates an Escherichia coli locus implicated in lipopolysaccharide biogenesis. Research in Microbiology, 2011, 162, 470-482.	2.1	19
21	Functional Interaction between the Cytoplasmic ABC Protein LptB and the Inner Membrane LptC Protein, Components of the Lipopolysaccharide Transport Machinery in Escherichia coli. Journal of Bacteriology, 2016, 198, 2192-2203.	2.2	17
22	The Lpt ABC transporter for lipopolysaccharide export to the cell surface. Research in Microbiology, 2019, 170, 366-373.	2.1	17
23	Functional Characterization of <i>E. coli</i> LptC: Interaction with LPS and a Synthetic Ligand. ChemBioChem, 2014, 15, 734-742.	2.6	16
24	Targeting Bacterial Biofilm: A New LecA Multivalent Ligand with Inhibitory Activity. ChemBioChem, 2019, 20, 2911-2915.	2.6	15
25	Lysozyme Mucoadhesive Tablets Obtained by Freeze-Drying. Journal of Pharmaceutical Sciences, 2019, 108, 3667-3674.	3.3	11
26	Arabinose 5-phosphate isomerase as a target for antibacterial design: Studies with substrate analogues and inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 2576-2583.	3.0	10
27	Lipopolysaccharide Transport to the Cell Surface: New Insights in Assembly into the Outer Membrane. Structure, 2016, 24, 847-849.	3.3	10
28	Phosphonate Analogues of Arabinose 5â€Phosphate: Putative Ligands for Arabinose 5â€Phosphate Isomerases. European Journal of Organic Chemistry, 2013, 2013, 7776-7784.	2.4	4
29	Fat Matters for Bugs: How Lipids and Lipid Modifications Make the Difference in Bacterial Life. European Journal of Lipid Science and Technology, 2019, 121, 1900204.	1.5	4
30	On-cell saturation transfer difference NMR for the identification of FimH ligands and inhibitors. Bioorganic Chemistry, 2021, 112, 104876.	4.1	4
31	Synthesis and biological evaluation of arabinose 5-phosphate mimics modified at position five. Carbohydrate Research, 2014, 389, 186-191.	2.3	1