
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein. Chemistry and Physics of Lipids, 2000, 106, 53-63.	3.2	136
2	In Vitro Study of the Relationship between the Structure of Ginsenoside and Its Antioxidative or Prooxidative Activity in Free Radical Induced Hemolysis of Human Erythrocytes. Journal of Agricultural and Food Chemistry, 2003, 51, 2555-2558.	5.2	133
3	Chemical Methods To Evaluate Antioxidant Ability. Chemical Reviews, 2010, 110, 5675-5691.	47.7	133
4	Phenolic and Enolic Hydroxyl Groups in Curcumin: Which Plays the Major Role in Scavenging Radicals?. Journal of Agricultural and Food Chemistry, 2009, 57, 11041-11046.	5.2	102
5	Chemical Insights into Ginseng as a Resource for Natural Antioxidants. Chemical Reviews, 2012, 112, 3329-3355.	47.7	79
6	Coumarin-Fused Coumarin: Antioxidant Story from <i>N</i> , <i>N</i> -Dimethylamino and Hydroxyl Groups. Journal of Agricultural and Food Chemistry, 2015, 63, 3516-3523.	5.2	72
7	Comparison of antioxidant abilities of magnolol and honokiol to scavenge radicals and to protect DNA. Biochimie, 2011, 93, 1755-1760.	2.6	70
8	Antioxidative and prooxidative effects of coumarin derivatives on free radical initiated and photosensitized peroxidation of human low-density lipoprotein. Chemistry and Physics of Lipids, 1999, 103, 125-135.	3.2	65
9	Solvent-Free and Catalyst-Free Biginelli Reaction To Synthesize Ferrocenoyl Dihydropyrimidine and Kinetic Method To Express Radical-Scavenging Ability. Journal of Organic Chemistry, 2012, 77, 3952-3958.	3.2	62
10	Can ginsenosides protect human erythrocytes against free-radical-induced hemolysis?. Biochimica Et Biophysica Acta - General Subjects, 2002, 1572, 58-66.	2.4	58
11	Freeâ€Radicalâ€Scavenging Effect of Carbazole Derivatives on DPPH and ABTS Radicals. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 1095-1100.	1.9	54
12	Unusual Antioxidant Behavior of α- and γ-Terpinene in Protecting Methyl Linoleate, DNA, and Erythrocyte. Journal of Agricultural and Food Chemistry, 2009, 57, 3943-3948.	5.2	52
13	The antioxidative effect of icariin in human erythrocytes against free-radical-induced haemolysisâ€. Journal of Pharmacy and Pharmacology, 2010, 56, 1557-1562.	2.4	50
14	Making vitamin C lipophilic enhances its protective effect against free radical induced peroxidation of low density lipoprotein. Chemistry and Physics of Lipids, 1998, 95, 49-57.	3.2	46
15	The protective effect of hydroxylâ€substituted Schiff bases on the radicalâ€induced oxidation of DNA. Journal of Physical Organic Chemistry, 2009, 22, 791-798.	1.9	44
16	The protective effects of ginsenosides on human erythrocytes against hemin-induced hemolysis. Food and Chemical Toxicology, 2008, 46, 886-892.	3.6	41
17	Antioxidative effect of melatonin on DNA and erythrocytes against free-radical-induced oxidation. Chemistry and Physics of Lipids, 2008, 151, 77-84.	3.2	40
18	Protective effect of icariin on DNA against radical-induced oxidative damage. Journal of Pharmacy and Pharmacology, 2010, 59, 1729-1732.	2.4	40

#	Article	IF	CITATIONS
19	Ferrocenyl Schiff base as novel antioxidant to protect DNA against the oxidation damage. European Journal of Pharmaceutical Sciences, 2011, 44, 158-163.	4.0	40
20	Free-radical-scavenging effect of carbazole derivatives on AAPH-induced hemolysis of human erythrocytes. Bioorganic and Medicinal Chemistry, 2007, 15, 1903-1913.	3.0	37
21	Chemical Kinetic Behavior of Chlorogenic Acid in Protecting Erythrocyte and DNA against Radical-Induced Oxidation. Journal of Agricultural and Food Chemistry, 2008, 56, 11025-11029.	5.2	36
22	Properties of Synthetic Homoisoflavonoids To Reduce Oxidants and To Protect Linoleic Acid and DNA against Oxidation. Journal of Agricultural and Food Chemistry, 2010, 58, 4126-4131.	5.2	35
23	Ferrocenyl-substituted curcumin: Can it influence antioxidant ability to protect DNA?. European Journal of Medicinal Chemistry, 2011, 46, 1821-1826.	5.5	34
24	Potential Applications of Ferrocene as a Structural Feature in Antioxidants. Mini-Reviews in Medicinal Chemistry, 2011, 11, 345-358.	2.4	34
25	Bridging free radical chemistry with drug discovery: A promising way for finding novel drugs efficiently. European Journal of Medicinal Chemistry, 2020, 189, 112020.	5.5	34
26	Antioxidant effectiveness generated by one or two phenolic hydroxyl groups in coumarin-substituted dihydropyrazoles. European Journal of Medicinal Chemistry, 2013, 68, 385-393.	5.5	31
27	Coumestan Inhibits Radical-Induced Oxidation of DNA: Is Hydroxyl a Necessary Functional Group?. Journal of Agricultural and Food Chemistry, 2014, 62, 5636-5642.	5.2	30
28	Icariin:Â A Special Antioxidant To Protect Linoleic Acid against Free-Radical-Induced Peroxidation in Micelles. Journal of Physical Chemistry A, 2006, 110, 6372-6378.	2.5	28
29	Radical-scavenging properties of ferrocenyl chalcones. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 944-946.	2.2	28
30	Dendritic antioxidants with pyrazole as the core: Ability to scavenge radicals and to protect DNA. Free Radical Biology and Medicine, 2012, 52, 103-108.	2.9	28
31	Design and synthesis of coumarin-3-acylamino derivatives to scavenge radicals and to protect DNA. European Journal of Medicinal Chemistry, 2014, 84, 1-7.	5.5	25
32	Development of amino- and dimethylcarbamate-substituted resorcinol as programmed cell death-1 (PD-1) inhibitor. European Journal of Pharmaceutical Sciences, 2016, 88, 50-58.	4.0	25
33	Antioxidant effect of coumarin derivatives on free radical initiated and photosensitized peroxidation of linoleic acid in micelles. Journal of the Chemical Society Perkin Transactions II, 1999, , 969.	0.9	24
34	Two Neglected Multicomponent Reactions: Asinger and Groebke Reaction for Constructing Thiazolines and Imidazolines. Current Organic Synthesis, 2015, 12, 20-60.	1.3	24
35	Ugi and Passerini Reactions as Successful Models for Investigating Multicomponent Reactions. Current Organic Chemistry, 2014, 18, 719-739.	1.6	24
36	Thiaflavan scavenges radicals and inhibits DNA oxidation: A story from the ferrocene modification. European Journal of Medicinal Chemistry, 2014, 81, 227-236.	5.5	23

#	Article	IF	CITATIONS
37	Introducing ferrocene into imidazo[1,2- a]pyridine by Groebke three-component-reaction for scavenging radicals and inhibiting DNA oxidation. Tetrahedron, 2015, 71, 9602-9610.	1.9	23
38	Evaluation of the free-radical-scavenging activity of diclofenac acid on the free-radical-induced haemolysis of human erythrocytesâ€. Journal of Pharmacy and Pharmacology, 2010, 58, 625-631.	2.4	22
39	Feruloylacetone as the model compound of half-curcumin: Synthesis and antioxidant properties. European Journal of Medicinal Chemistry, 2011, 46, 1198-1206.	5.5	22
40	Synthesis of 4-methylcoumarin derivatives containing 4,5-dihydropyrazole moiety to scavenge radicals and to protect DNA. European Journal of Medicinal Chemistry, 2012, 53, 159-167.	5.5	22
41	Ugi Multicomponent Reaction Product: The Inhibitive Effect on DNA Oxidation Depends upon the Isocyanide Moiety. Journal of Organic Chemistry, 2013, 78, 8696-8704.	3.2	22
42	Antioxidative or prooxidative effect of 4-hydroxyquinoline derivatives on free-radical-initiated hemolysis of erythrocytes is due to its distributive status. Biochimica Et Biophysica Acta - General Subjects, 2002, 1570, 97-103.	2.4	21
43	The antioxidant effect of hydroxyl-substituent Schiff bases on the free-radical-induced hemolysis of human erythrocytes. Cell Biochemistry and Function, 2007, 25, 149-158.	2.9	21
44	Antioxidants may not always be beneficial to health. Nutrition, 2014, 30, 131-133.	2.4	21
45	Quantitative structure–activity relationship of hydroxylâ€substituent Schiff bases in radicalâ€induced hemolysis of human erythrocytes. Cell Biochemistry and Function, 2008, 26, 185-191.	2.9	20
46	Carminic acid: an antioxidant to protect erythrocytes and DNA against radicalâ€induced oxidation. Journal of Physical Organic Chemistry, 2009, 22, 883-887.	1.9	20
47	Solvent-free Povarov reaction for synthesizing ferrocenyl quinolines: Antioxidant abilities deriving from ferrocene moiety. European Journal of Medicinal Chemistry, 2014, 86, 759-768.	5.5	19
48	Captopril and 6-mercaptopurine: Whose SH possesses higher antioxidant ability?. European Journal of Medicinal Chemistry, 2009, 44, 4841-4847.	5.5	18
49	Synthesis and antioxidant capacities of hydroxyl derivatives of cinnamoylphenethylamine in protecting DNA and scavenging radicals. Free Radical Research, 2011, 45, 445-453.	3.3	18
50	Coumarin moiety can enhance abilities of chalcones to inhibit DNA oxidation and to scavenge radicals. Tetrahedron, 2014, 70, 8397-8404.	1.9	16
51	Why natural antioxidants are readily recognized by biological systems? 3D architecture plays a role!. Food Chemistry, 2022, 380, 132143.	8.2	16
52	How many peroxyl radicals can be scavenged by hydroxylâ€substituted Schiff bases in the oxidation of linoleic acid?. Journal of Physical Organic Chemistry, 2009, 22, 308-312.	1.9	15
53	Coumarin sharing the benzene ring with quinoline for quenching radicals and inhibiting DNA oxidation. European Journal of Medicinal Chemistry, 2015, 95, 416-423.	5.5	15
54	Dichloro-4-quinolinol-3-carboxylic acid: Synthesis and antioxidant abilities to scavenge radicals and to protect methyl linoleate and DNA. European Journal of Medicinal Chemistry, 2010, 45, 1821-1827.	5.5	14

#	Article	IF	CITATIONS
55	Synthesis of imidazo[1,2-a]quinoxalines by double Groebke reactions and inhibitory effects on radicals and DNA oxidation. Tetrahedron, 2016, 72, 1850-1859.	1.9	14
56	Cholesterol, Not Polyunsaturated Fatty Acids, is Target Molecule in Oxidation Induced by Reactive Oxygen Species in Membrane of Human Erythrocytes. Cell Biochemistry and Biophysics, 2006, 45, 185-194.	1.8	13
57	How Many Free Radicals can be Trapped by (Hydroxylphenylimino)methylphenol in the Free-Radical-Induced Peroxidation of Triolein in Micelles?. QSAR and Combinatorial Science, 2007, 26, 488-495.	1.4	13
58	Synthesis of methyl-substituted xanthotoxol to clarify prooxidant effect of methyl on radical-induced oxidation of DNA. European Journal of Medicinal Chemistry, 2010, 45, 2559-2566.	5.5	13
59	Diaryl-1,2,4-oxadiazole antioxidants: Synthesis and properties of inhibiting the oxidation of DNA and scavenging radicals. Biochimie, 2013, 95, 842-849.	2.6	13
60	Including 4-Hydroxyquinoline Derivatives into β-Cyclodextrin to Form Complexes Affects Their Antioxidative Effect on Free-Radical-Induced Hemolysis of Human Erythrocytes. QSAR and Combinatorial Science, 2003, 22, 859-864.	1.4	12
61	Ferrocenyl-contained dendritic-like antioxidants with dihydropyrazole and pyrazole as the core: investigations into the role of ferrocenyl group and structure–activity relationship on scavenging radical and protecting DNA. Tetrahedron, 2013, 69, 9898-9905.	1.9	12
62	Ferrocenyl-Appended Aurone and Flavone: Which Possesses Higher Inhibitory Effects on DNA Oxidation and Radicals?. Chemical Research in Toxicology, 2015, 28, 451-459.	3.3	12
63	Activity of coumarin–oxadiazole-appended phenol in inhibiting DNA oxidation and scavenging radical. Tetrahedron Letters, 2015, 56, 6257-6261.	1.4	12
64	An Overview on the Robinson Annulation. Current Organic Chemistry, 2018, 22, 1347-1372.	1.6	12
65	Lidocaine: An inhibitor in the freeâ€radicalâ€induced hemolysis of erythrocytes. Journal of Biochemical and Molecular Toxicology, 2009, 23, 81-86.	3.0	11
66	Comparison of antioxidant effectiveness of lipoic acid and dihydrolipoic acid. Journal of Biochemical and Molecular Toxicology, 2011, 25, 216-223.	3.0	11
67	2-Isocyano glucose used in Ugi four-component reaction: An approach to enhance inhibitory effect against DNA oxidation. European Journal of Medicinal Chemistry, 2017, 135, 458-466.	5.5	11
68	Enhancing Antioxidant Effect against Peroxyl Radicalâ€Induced Oxidation of DNA: Linking with Ferrocene Moiety!. Chemical Record, 2019, 19, 2385-2397.	5.8	11
69	Kinetic study on the prooxidative effect of vitamin C on the autoxidation of glycerol trioleate in micelles. Journal of Physical Organic Chemistry, 2006, 19, 136-142.	1.9	10
70	Indole and its alkylâ€substituted derivatives protect erythrocyte and DNA against radicalâ€induced oxidation. Journal of Biochemical and Molecular Toxicology, 2009, 23, 273-279.	3.0	10
71	Antioxidant effects of phenothiazine, phenoxazine, and iminostilbene on freeâ€radicalâ€induced oxidation of linoleic acid and DNA. Journal of Physical Organic Chemistry, 2009, 22, 1009-1014.	1.9	10
72	Modification by ferrocene: An approach to enhance antioxidant ability of ailanthoidol to protect DNA. Biochimie, 2012, 94, 1805-1811.	2.6	10

#	Article	IF	CITATIONS
73	Ferrocenyl chalcones: antioxidants or prooxidants in radical-induced oxidation of DNA?. Medicinal Chemistry Research, 2012, 21, 3015-3020.	2.4	9
74	FERULIC AND COUMARIC ACIDS: APPLICATION TO RELEASE OXIDATIVE STRESS OF DNA AND METHYL LINOLEATE. Journal of Food Biochemistry, 2012, 36, 38-45.	2.9	9
75	Discovery of Novel Imidazo[1,2-a]-involved N-Heterocyclic Drugs by Groebke-Blackburn-Bienayme Three-Component-Reaction. Mini-Reviews in Organic Chemistry, 2016, 13, 166-183.	1.3	9
76	The "Unexpected Role" of Vitamin E in Free Radical-Induced Hemolysis of Human Erythrocytes: α-Tocopherol-Mediated Peroxidation. Cell Biochemistry and Biophysics, 2006, 44, 233-240.	1.8	8
77	Asymmetrical mono-carbonyl ferrocenylidene curcumin and their dihydropyrazole derivatives: Which possesses the highest activity to protect DNA or scavenge radical?. Medicinal Chemistry Research, 2014, 23, 3478-3490.	2.4	8
78	Hybrid of Resveratrol and Glucosamine: An Approach To Enhance Antioxidant Effect against DNA Oxidation. Chemical Research in Toxicology, 2018, 31, 936-944.	3.3	8
79	Modification on Fullerene. Current Organic Synthesis, 2017, 14, .	1.3	8
80	Attaching a Dipeptide to Fullerene as an Antioxidant Hybrid against DNA Oxidation. Chemical Research in Toxicology, 2021, 34, 2366-2374.	3.3	8
81	Ferrocene as a functional group enhances the inhibitive effect of dihydropyrimidine on radical-induced oxidation of DNA. Organic Chemistry Frontiers, 2014, 1, 792.	4.5	7
82	Anti-Oxidant in China: A Thirty-Year Journey. The American Journal of Chinese Medicine, 2019, 47, 1005-1024.	3.8	7
83	Insight into the free-radical-scavenging mechanism of hydroxyl-substituent Schiff bases in the free-radical-induced hemolysis of erythrocytes. Cell Biochemistry and Function, 2007, 25, 701-710.	2.9	6
84	Synthesis of hydroxyferrocifen and its abilities to protect DNA and to scavenge radicals. Journal of Biological Inorganic Chemistry, 2011, 16, 1169-1176.	2.6	6
85	Facile synthesis of furoquinoline and effects on radical-induced oxidation of DNA. Medicinal Chemistry Research, 2013, 22, 1563-1569.	2.4	6
86	Passerini three-component adducts as radical scavengers. Tetrahedron Letters, 2015, 56, 7028-7033.	1.4	6
87	Tetrahydropyrrolization of Resveratrol and Other Stilbenes Improves Inhibitory Effects on DNA Oxidation. ChemMedChem, 2016, 11, 1617-1625.	3.2	6
88	How to Start a Total Synthesis from the Wieland-Miescher Ketone?. Current Organic Synthesis, 2019, 16, 328-341.	1.3	5
89	The "double-faced―effect of VC-12 on free-radical-induced haemolysis of human erythrocytes: antioxidant and prooxidantâ€. Journal of Pharmacy and Pharmacology, 2010, 59, 739-743.	2.4	4
90	Synthesis of licochalcones and inhibition effects on radical-induced oxidation of DNA. Medicinal Chemistry Research, 2013, 22, 2847-2854.	2.4	4

#	Article	IF	CITATIONS
91	Tetramer as efficient structural mode for organizing antioxidative carboxylic acids: The case in inhibiting DNA oxidation. Archives of Biochemistry and Biophysics, 2017, 631, 1-10.	3.0	4
92	Construction of 3D Antioxidants with Nucleosides as the Core: Inhibition of DNA Oxidation. Journal of Organic Chemistry, 2019, 84, 15854-15864.	3.2	4
93	Diclofenac acid: a freeâ€radicalâ€scavenger to protect DNA against radicalâ€induced oxidation. Drug Development Research, 2009, 70, 520-524.	2.9	2
94	The antioxidant effects of the butterfly cluster [(μ-SeCH2)2CH(OH)]Fe2(CO)6 on radical-induced oxidation of DNA. Medicinal Chemistry Research, 2013, 22, 2809-2814.	2.4	2
95	Multicomponent Reactions for Integrating Multiple Functional Groups into an Antioxidant. Chemical Record, 2020, 20, 1516-1529.	5.8	2
96	Proâ€oxidant effects of phenothiazine and phenoxazine on erythrocytes in the presence of peroxyl radical. Journal of Biochemical and Molecular Toxicology, 2009, 23, 280-286.	3.0	1
97	Effects of micelle on pyrazoles as antioxidants in radical-induced oxidation of DNA. Chemical Research in Chinese Universities, 2013, 29, 671-677.	2.6	1
98	Novel kinetic method for expressing the ability of antioxidant to scavenge radicals. Chemical Research in Chinese Universities, 2013, 29, 947-951.	2.6	0