Elizabeth A H Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2190103/publications.pdf

Version: 2024-02-01

87 papers 2,926 citations

30 h-index 52 g-index

88 all docs 88 docs citations

88 times ranked 3677 citing authors

#	Article	IF	CITATIONS
1	Analysis and validation of silica-immobilised BST polymerase in loop-mediated isothermal amplification (LAMP) for malaria diagnosis. Analytical and Bioanalytical Chemistry, 2022, 414, 6309-6326.	1.9	8
2	Upconversion nanoparticles as intracellular pH messengers. Analytical and Bioanalytical Chemistry, 2020, 412, 6567-6581.	1.9	15
3	A Biosilification Fusion Protein for a â€~Selfâ€immobilising' Sarcosine Oxidase Amperometric Enzyme Biosensor. Electroanalysis, 2020, 32, 874-884.	1.5	2
4	Upconversion nanoparticles for sensing pH. Analyst, The, 2019, 144, 5547-5557.	1.7	33
5	Gene to diagnostic: Self immobilizing protein for silica microparticle biosensor, modelled with sarcosine oxidase. Biomaterials, 2019, 193, 58-70.	5.7	17
6	A fabrication method of gold coated colloidosomes and their application as targeted drug carriers. Soft Matter, 2018, 14, 2594-2603.	1.2	19
7	Metal Coated Colloidosomes as Carriers for an Antibiotic. Frontiers in Chemistry, 2018, 6, 196.	1.8	4
8	Orthologues of Bacillus subtilis Spore Crust Proteins Have a Structural Role in the Bacillus megaterium QM B1551 Spore Exosporium. Applied and Environmental Microbiology, 2018, 84, .	1.4	9
9	Functional Silver-Coated Colloidosomes as Targeted Carriers for Small Molecules. Langmuir, 2017, 33, 3755-3764.	1.6	15
10	Model for Microcapsule Drug Release with Ultrasound-Activated Enhancement. Langmuir, 2017, 33, 12960-12972.	1.6	9
11	Zein as biodegradable material for effective delivery of alkaline phosphatase and substrates in biokits and biosensors. Biosensors and Bioelectronics, 2016, 86, 14-19.	5.3	19
12	Mapping minimum reflection distribution of surface plasmon resonance with a complex refractive index. Analytical Methods, 2016, 8, 8299-8305.	1.3	1
13	Enzyme-Degradable Hybrid Polymer/Silica Microbubbles as Ultrasound Contrast Agents. Langmuir, 2016, 32, 6534-6543.	1.6	23
14	A molecular biology approach to protein coupling at a biosensor interface. TrAC - Trends in Analytical Chemistry, 2016, 79, 247-256.	5.8	10
15	A step towards mobile arsenic measurement for surface waters. Analyst, The, 2015, 140, 2644-2655.	1.7	23
16	Fe ³⁺ /Fe ²⁺ Mycobactinâ€Complex Electrochemistry as an Approach to Determine Mycobactin Levels in Urine. Electroanalysis, 2015, 27, 833-842.	1.5	4
17	Plasmid-encoded genes influence exosporium assembly and morphology inBacillus megateriumQM B1551 spores. FEMS Microbiology Letters, 2015, 362, fnv147.	0.7	11
18	BMQ_0737 encodes a novel protein crucial to the integrity of the outermost layers of <i>Bacillus megaterium </i> QM B1551 spores. FEMS Microbiology Letters, 2014, 358, 162-169.	0.7	4

#	Article	IF	CITATIONS
19	BRET-linked ATP assay with luciferase. Analyst, The, 2014, 139, 4185-4192.	1.7	14
20	pH sensitive quantum dot–anthraquinone nanoconjugates. Nanotechnology, 2014, 25, 195501.	1.3	12
21	Engineered Proteins for Bioelectrochemistry. Annual Review of Analytical Chemistry, 2014, 7, 257-274.	2.8	14
22	Microfluidics-based acoustic microbubble biosensor. , 2013, , .		3
23	A chloride ion nanosensor for time-resolved fluorimetry and fluorescence lifetime imaging. Analyst, The, 2012, 137, 1500.	1.7	53
24	Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance. Analyst, The, 2012, 137, 4712.	1.7	78
25	Fluorescent nanoparticles for intracellular sensing: A review. Analytica Chimica Acta, 2012, 751, 1-23.	2.6	276
26	An optrode particle geometry to decrease response time. Analyst, The, 2011, 136, 4718.	1.7	10
27	A chelating dendritic ligand capped quantum dot: preparation, surface passivation, bioconjugation and specific DNA detection. Nanoscale, 2011, 3, 201-211.	2.8	33
28	Quantum dot photoluminescence lifetime-based pH nanosensor. Chemical Communications, 2011, 47, 2898.	2.2	72
29	Effect of Surface Modification on Semiconductor Nanocrystal Fluorescence Lifetime. ChemPhysChem, 2011, 12, 919-929.	1.0	26
30	Analytical Nanosphere Sensors Using Quantum Dotâ^'Enzyme Conjugates for Urea and Creatinine. Analytical Chemistry, 2010, 82, 9043-9049.	3.2	70
31	Ratiometric pH-dot ANSors. Analyst, The, 2010, 135, 1585.	1.7	42
32	Ultrabubble: A Laminated Ultrasound Contrast Agent with Narrow Size Range. Advanced Materials, 2009, 21, 3949-3952.	11.1	80
33	Water Transport in Poly(<i>n</i>)â€butyl acrylate) Ionâ€Selective Membranes. Electroanalysis, 2009, 21, 1992-2003.	1.5	18
34	Breaking the barrier to fast electron transfer. Bioelectrochemistry, 2009, 76, 19-27.	2.4	40
35	Multiplexed energy transfer mechanisms in a dual-function quantum dot for zinc and manganese. Analyst, The, 2009, 134, 159-169.	1.7	53
36	A quantum dot–lucigenin probe for Clâ^'. Analyst, The, 2008, 133, 1556.	1.7	49

#	Article	IF	CITATIONS
37	Protein Engineering and Electrochemical Biosensors. , 2008, 109, 65-96.		10
38	Azamacrocycle Activated Quantum Dot for Zinc Ion Detection. Analytical Chemistry, 2008, 80, 8260-8268.	3.2	139
39	Composite Polyacrylateâ^Poly(3,4- ethylenedioxythiophene) Membranes for Improved All-Solid-State Ion-Selective Sensors. Analytical Chemistry, 2008, 80, 321-327.	3.2	37
40	A multi-ion particle sensor. Chemical Communications, 2007, , 1544.	2.2	48
41	Triggering blue–red transition response in polydiacetylene vesicles: an electrochemical surface plasmon resonance method. Analyst, The, 2007, 132, 801-810.	1.7	3
42	The Emerging Use of Quantum Dots in Analysis. Analytical Letters, 2007, 40, 1497-1520.	1.0	63
43	K+-selective nanospheres: maximising response range and minimising response time. Analyst, The, 2006, 131, 1282.	1.7	59
44	pH Response of Carboxy-Terminated Colorimetric Polydiacetylene Vesicles. Analytical Chemistry, 2006, 78, 2231-2238.	3.2	152
45	Structural effect of polymerisation and dehydration on bolaamphiphilic polydiacetylene assemblies. Journal of Materials Chemistry, 2006, 16, 2039.	6.7	16
46	Manometric transduction in enzyme biosensors. Biosensors and Bioelectronics, 2006, 22, 94-101.	5.3	0
47	Rapid detection of toxicity in wastewater: Recent developments with manometric respirometry. Analytica Chimica Acta, 2006, 573-574, 147-157.	2.6	8
48	Designing a curved surface SPR device. Sensors and Actuators B: Chemical, 2006, 114, 804-811.	4.0	10
49	A strand exchange FRET assay for DNA. Biosensors and Bioelectronics, 2004, 20, 1001-1010.	5. 3	13
50	An Experimental Study of Membrane Materials and Inner Contacting Layers for Ion-Selective K+Electrodes with a Stable Response and Good Dynamic Range. Analytical Chemistry, 2004, 76, 2031-2039.	3.2	91
51	Surface Plasmon Resonance:Â Theoretical Evolutionary Design Optimization for a Model Analyte Sensitive Absorbing-Layer System. Analytical Chemistry, 2004, 76, 6861-6870.	3.2	14
52	Examination of bilayer lipid membranes for â€~pin-hole' character. Analyst, The, 2004, 129, 1014-1025.	1.7	9
53	Ion-transport and diffusion coefficients of non-plasticised methacrylic–acrylic ion-selective membranes. Talanta, 2004, 63, 73-87.	2.9	89
54	Seeking connectivity between engineered proteins and transducers: connection for glutathione S-transferase fusion proteins on surface plasmon resonance devices. Analytica Chimica Acta, 2003, 500, 323-336.	2.6	9

#	Article	IF	Citations
55	Short peptide receptor mimics for atherosclerosis risk assessment of LDL. Biosensors and Bioelectronics, 2003, 18, 151-164.	5.3	6
56	Using trimethylamine dehydrogenase in an enzyme linked amperometric electrode. Analyst, The, 2003, 128, 889.	1.7	12
57	Using trimethylamine dehydrogenase in an enzyme linked amperometric electrode. Analyst, The, 2003, 128, 166-172.	1.7	17
58	Testing the Durability of Polymyxin B Immobilization on a Polymer Showing Antimicrobial Activity: A Novel Approach with the Ion-Step Method. Analytical Letters, 2003, 36, 1781-1803.	1.0	10
59	Direct toxicity assessment of wastewater: Baroxymeter, a portable rapid toxicity device and the industry perspective. Environmental Toxicology, 2002, 17, 284-290.	2.1	14
60	Tuning the parameters for fast respirometry. Analytica Chimica Acta, 2002, 460, 257-270.	2.6	9
61	Low density lipoprotein interaction with amino acid-modified self assembled monolayers on surface plasmon resonance surfaces. Analytica Chimica Acta, 2002, 470, 3-17.	2.6	16
62	Assessment of the fifth ligand-binding repeat (LR5) of the LDL receptor as an analytical reagent for LDL binding. Analyst, The, 2001, 126, 329-336.	1.7	7
63	ANALYTICAL SCIENCE: WHAT IS THE UK UP TO?. Analytical Letters, 2001, 34, 313-327.	1.0	0
64	Applying Immittance Spectroscopy to Monitoring Hydrogen Peroxide in the Presence of Ascorbic Acid. Part I: Theoretical Considerations. Electroanalysis, 2001, 13, 437-444.	1.5	4
65	Selective Monitoring of the Hydrogen Peroxide Signal in the Presence of Ascorbic Acid. Part II: Preliminary Practical Realization of Applying Immittance Spectroscopy. Electroanalysis, 2001, 13, 517-523.	1.5	3
66	Assessing a photocured self-plasticised acrylic membrane recipe for Na+ and K+ ion selective electrodes. Analytica Chimica Acta, 2001, 443, 25-40.	2.6	57
67	A peptide library on an SPR chip as an analytical tool at the heart of the matter. Biochemical Society Transactions, 2000, 28, A21-A21.	1.6	0
68	One-Step Synthesis of K+-Selective Methacrylic-Acrylic Copolymers Containing Grafted Ionophore and Requiring No Plasticizer. Electroanalysis, 2000, 12, 178-186.	1.5	51
69	Taking the Plasticizer out of Methacrylic-Acrylic Membranes for K+-Selective Electrodes. Electroanalysis, 2000, 12, 187-193.	1.5	38
70	Methacrylic–acrylic polymers in ion-selective membranes: achieving the right polymer recipe. Analytica Chimica Acta, 2000, 403, 77-89.	2.6	66
71	Designing the †fill and flow' (bio)sensor to give stable measurements from a dynamic system. Sensors and Actuators B: Chemical, 2000, 63, 186-194.	4.0	5
72	Producing "Self-Plasticizing―Ion-Selective Membranes. Analytical Chemistry, 2000, 72, 42-51.	3.2	141

#	Article	IF	CITATIONS
73	Phasor transform to extract glucose and ascorbic acid data in an amperometric sensor. Analyst, The, 2000, 125, 1987-1992.	1.7	11
74	Acrylate polymer immobilisation of enzymes. Fresenius' Journal of Analytical Chemistry, 1999, 364, 58-65.	1.5	8
75	A Sandwich Enzyme Electrode Giving Electrochemical Scavenging of Interferents. Electroanalysis, 1999, 11, 749-755.	1.5	11
76	Inducing a Cationic Response in Poly(pyrrole) Films. Electroanalysis, 1999, 11, 756-762.	1.5	22
77	Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst, The, 1999, 124, 1599-1604.	1.7	170
78	Detection of Oxidized Low-Density Lipoproteins Using Surface Plasmon Resonance. Analytical Chemistry, 1999, 71, 2459-2467.	3.2	13
79	Frequency Domain Selection of the Peroxide Signal for Amperometric Biosensors. Electroanalysis, 1998, 10, 1089-1095.	1.5	8
80	From Thick Films to Monolayer Recognition Layers in Amperometric Enzyme Electrodes. Electroanalysis, 1998, 10, 1130-1136.	1.5	49
81	A Fill-and-Flow Biosensor. Analytical Chemistry, 1998, 70, 3131-3136.	3.2	24
82	Parameters in the design of oxygen detecting oxidase enzyme electrodes. Electroanalysis, 1996, 8, 407-413.	1.5	42
83	Investigating polymers and conducting metals as transduction mediators or immobilization matrices. Electroanalysis, 1995, 7, 830-837.	1.5	29
84	Redox enzyme linked electrochemical sensors: Theory meets practice. Mikrochimica Acta, 1995, 121, 119-145.	2.5	56
85	DIAMINODURENE AS A MEDIATOR OF A PHOTOCURRENT USING INTACT CELLS OF CYANOBACTERIA. Photochemistry and Photobiology, 1994, 59, 91-98.	1.3	30
86	Catalytic reduction of benzoquinone at polyaniline and polyaniline/enzyme films. Electroanalysis, 1993, 5, 385-397.	1.5	48
87	Overview of Biosensors. ACS Symposium Series, 1992, , 1-14.	0.5	10