Francisco Camara Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/218965/publications.pdf

Version: 2024-02-01

129 papers 5,386 citations

30 h-index 91712 69 g-index

132 all docs 132 docs citations

times ranked

132

5936 citing authors

#	Article	IF	CITATIONS
1	Active learning metamodelling for survival rate analysis of simulated emergency medical systems. Transportmetrica A: Transport Science, 2024, 20, .	1.3	O
2	QTIP: Quick simulation-based adaptation of traffic model per incident parameters. Journal of Simulation, 2022, 16, 111-131.	1.0	3
3	Bayesian Automatic Relevance Determination for Utility Function Specification in Discrete Choice Models. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 3126-3136.	4.7	6
4	Population synthesis for urban resident modeling using deep generative models. Neural Computing and Applications, 2022, 34, 4677-4692.	3.2	3
5	Choice modelling in the age of machine learning - Discussion paper. Journal of Choice Modelling, 2022, 42, 100340.	1.2	27
6	Open vs closed-ended questions in attitudinal surveys – Comparing, combining, and interpreting using natural language processing. Transportation Research Part C: Emerging Technologies, 2022, 137, 103589.	3.9	5
7	Predictive and prescriptive performance of bike-sharing demand forecasts for inventory management. Transportation Research Part C: Emerging Technologies, 2022, 138, 103571.	3.9	16
8	Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nature Human Behaviour, 2022, 6, 975-987.	6.2	34
9	A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability. Transportation Research Part B: Methodological, 2022, 163, 166-186.	2.8	9
10	Estimating causal effects with the neural autoregressive density estimator. Journal of Causal Inference, 2021, 9, 211-228.	0.5	0
11	Open-Ended Versus Closed-Ended Responses: A Comparison Study Using Topic Modeling and Factor Analysis. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2123-2132.	4.7	14
12	Assisted specification of discrete choice models. Journal of Choice Modelling, 2021, 39, 100285.	1.2	9
13	Improving the accuracy and efficiency of online calibration for simulation-based Dynamic Traffic Assignment. Transportation Research Part C: Emerging Technologies, 2021, 128, 103195.	3.9	11
14	Demand And/oR Equity (DARE) method for planning bike-sharing. Transportation Research, Part D: Transport and Environment, 2021, 97, 102914.	3.2	15
15	Latent class choice model with a flexible class membership component: A mixture model approach. Journal of Choice Modelling, 2021, 41, 100320.	1.2	6
16	Transport behavior-mining from smartphones: a review. European Transport Research Review, 2021, 13,	2.3	8
17	On the quality requirements of demand prediction for dynamic public transport. Communications in Transportation Research, 2021, 1, 100008.	4.9	26
18	Graph Neural Network Reinforcement Learning for Autonomous Mobility-on-Demand Systems. , 2021, , .		19

#	Article	IF	Citations
19	Is Travel Demand Actually Deep? An Application in Event Areas Using Semantic Information. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 641-652.	4.7	6
20	Estimating latent demand of shared mobility through censored Gaussian Processes. Transportation Research Part C: Emerging Technologies, 2020, 120, 102775.	3.9	30
21	How fair is the allocation of bike-sharing infrastructure? Framework for a qualitative and quantitative spatial fairness assessment. Transportation Research, Part A: Policy and Practice, 2020, 140, 299-319.	2.0	22
22	Prediction of rare feature combinations in population synthesis: Application of deep generative modelling. Transportation Research Part C: Emerging Technologies, 2020, 120, 102787.	3.9	18
23	Stop detection for smartphone-based travel surveys using geo-spatial context and artificial neural networks. Transportation Research Part C: Emerging Technologies, 2020, 121, 102834.	3.9	10
24	Examining the potential of textual big data analytics for public policy decision-making: A case study with driverless cars in Denmark. Transport Policy, 2020, 98, 68-78.	3 . 4	28
25	Beyond Expectation: Deep Joint Mean and Quantile Regression for Spatiotemporal Problems. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 5377-5389.	7.2	42
26	Real-Time Predictive Control Strategy Optimization. Transportation Research Record, 2020, 2674, 1-11.	1.0	7
27	Directional Grid-Based Search for Simulation Metamodeling Using Active Learning. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 32-46.	0.2	0
28	Combining time-series and textual data for taxi demand prediction in event areas: A deep learning approach. Information Fusion, 2019, 49, 120-129.	11.7	108
29	Multi-Output Gaussian Processes for Crowdsourced Traffic Data Imputation. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 594-603.	4.7	51
30	How to generate micro-agents? A deep generative modeling approach to population synthesis. Transportation Research Part C: Emerging Technologies, 2019, 106, 73-97.	3.9	48
31	Active learning metamodeling for policy analysis: Application to an emergency medical service simulator. Simulation Modelling Practice and Theory, 2019, 97, 101947.	2.2	7
32	Use intention of mobility-management travel apps: The role of users goals, technophile attitude and community trust. Transportation Research, Part A: Policy and Practice, 2019, 126, 114-135.	2.0	31
33	Predicting taxi demand hotspots using automated Internet Search Queries. Transportation Research Part C: Emerging Technologies, 2019, 102, 73-86.	3.9	20
34	Motivating the use of real-time multimodal travel planners: the role of users value, technophile and community resilience. Transportation Research Procedia, 2019, 41, 113-116.	0.8	0
35	Multi-step ahead prediction of taxi demand using time-series and textual data. Transportation Research Procedia, 2019, 41, 540-544.	0.8	2
36	Preserving Uncertainty in Demand Prediction for Autonomous Mobility Services., 2019, , .		4

#	Article	IF	Citations
37	Multi-output Deep Learning for Bus Arrival Time Predictions. Transportation Research Procedia, 2019, 41, 138-145.	0.8	12
38	Participating in environmental loyalty program with a real-time multimodal travel app: User needs, environmental and privacy motivators. Transportation Research, Part D: Transport and Environment, 2019, 67, 223-243.	3.2	32
39	Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Systems With Applications, 2019, 120, 426-435.	4.4	197
40	Big Data and Transport Analytics: An Introduction. , 2019, , 1-5.		5
41	Model-Based Machine Learning for Transportation. , 2019, , 145-171.		2
42	Textual Data in Transportation Research: Techniques and Opportunities. , 2019, , 173-197.		1
43	Machine Learning Fundamentals. , 2019, , 9-29.		16
44	Data Preparation. , 2019, , 73-106.		5
45	Toward a universal decoder of linguistic meaning from brain activation. Nature Communications, 2018, 9, 963.	5.8	178
46	Social network analysis in future transportation systems: Contributions on observability, behaviour and structure. Transportation Research Part C: Emerging Technologies, 2018, 91, 369-370.	3.9	0
47	Improving Scalability of Generic Online Calibration for Real-Time Dynamic Traffic Assignment Systems. Transportation Research Record, 2018, 2672, 79-92.	1.0	25
48	Opening Up the Conversation: Topic Modeling for Automated Text Analysis in Travel Surveys. , 2018, , .		3
49	Overview of traffic incident duration analysis and prediction. European Transport Research Review, 2018, 10, .	2.3	53
50	Real-Time Taxi Demand Prediction using data from the web. , 2018, , .		7
51	Towards Dynamic Bayesian Networks: State Augmentation for Online Calibration of DTA Systems. , 2018, , .		1
52	Comparison of Four Types of Artificial Neural Network and a Multinomial Logit Model for Travel Mode Choice Modeling. Transportation Research Record, 2018, 2672, 101-112.	1.0	90
53	Activity Recognition for a Smartphone and Web-Based Human Mobility Sensing System. IEEE Intelligent Systems, 2018, 33, 5-23.	4.0	15
54	Active Learning for Input Space Exploration in Traffic Simulators. , 2018, , .		0

#	Article	IF	Citations
55	Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data. Transportation Research Part C: Emerging Technologies, 2018, 95, 636-651.	3.9	22
56	Efficient Transport Simulation With Restricted Batch-Mode Active Learning. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 3642-3651.	4.7	3
57	Learning Supervised Topic Models for Classification and Regression from Crowds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39, 2409-2422.	9.7	59
58	A Bayesian Additive Model for Understanding Public Transport Usage in Special Events. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39, 2113-2126.	9.7	33
59	Use of Taxi-Trip Data in Analysis of Demand Patterns for Detection and Explanation of Anomalies. Transportation Research Record, 2017, 2643, 129-138.	1.0	10
60	Enhancing resilience to disasters using social media. , 2017, , .		5
61	Probabilistic modeling and visualization for bankruptcy prediction. Applied Soft Computing Journal, 2017, 60, 831-843.	4.1	57
62	Reducing the Dimension of Online Calibration in Dynamic Traffic Assignment Systems. Transportation Research Record, 2017, 2667, 96-107.	1.0	14
63	Improved Calibration Method for Dynamic Traffic Assignment Models: Constrained Extended Kalman Filter. Transportation Research Record, 2017, 2667, 142-153.	1.0	11
64	Enabling Bus Transit Service Quality Co-Monitoring Through Smartphone-Based Platform. Transportation Research Record, 2017, 2649, 42-51.	1.0	8
65	Using internet search queries to predict human mobility in social events. , 2016, , .		1
66	Evaluating Off-Peak Pricing Strategies in Public Transportation with an Activity-Based Approach. Transportation Research Record, 2016, 2544, 10-19.	1.0	11
67	Mapping Social Media for Transportation Studies. IEEE Intelligent Systems, 2016, 31, 64-70.	4.0	32
68	Uncertainty in Bus Arrival Time Predictions: Treating Heteroscedasticity With a Metamodel Approach. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 3286-3296.	4.7	21
69	Modeling Human Reliability in the Power Grid Environment: an Application of the SPAR-H Methodology. Proceedings of the Human Factors and Ergonomics Society, 2015, 59, 662-666.	0.2	7
70	Exploratory Analysis of a Smartphone-Based Travel Survey in Singapore. Transportation Research Record, 2015, 2494, 45-56.	1.0	66
71	Quantifying mobility., 2015,,.		2
72	Stop Detection in Smartphone-based Travel Surveys. Transportation Research Procedia, 2015, 11, 218-226.	0.8	42

#	Article	IF	Citations
73	W–SPSA in Practice: Approximation of Weight Matrices and Calibration of Traffic Simulation Models. Transportation Research Procedia, 2015, 7, 233-253.	0.8	13
74	<italic>Why so many people</italic> ? Explaining Nonhabitual Transport Overcrowding With Internet Data. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 1370-1379.	4.7	35
75	Mining point-of-interest data from social networks for urban land use classification and disaggregation. Computers, Environment and Urban Systems, 2015, 53, 36-46.	3.3	243
76	Competing risk mixture model and text analysis for sequential incident duration prediction. Transportation Research Part C: Emerging Technologies, 2015, 54, 74-85.	3.9	37
77	W-SPSA in practice: Approximation of weight matrices and calibration of traffic simulation models. Transportation Research Part C: Emerging Technologies, 2015, 59, 129-146.	3.9	31
78	Using Data From the Web to Predict Public Transport Arrivals Under Special Events Scenarios. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2015, 19, 273-288.	2.6	70
79	DynaMIT2.0: Architecture Design and Preliminary Results on Real-Time Data Fusion for Traffic Prediction and Crisis Management. , 2015, , .		14
80	Competing risks mixture model for traffic incident duration prediction. Accident Analysis and Prevention, 2015, 75, 192-201.	3.0	49
81	A Genetic Algorithms Approach for Inverse Shortest Path Length Problems. International Journal of Natural Computing Research, 2014, 4, 36-54.	0.5	2
82	Activity Recognition for a Smartphone Based Travel Survey Based on Cross-User History Data., 2014,,.		14
83	Dead reckoning on smartphones to reduce GPS usage. , 2014, , .		3
84	An introduction to the special issue on cross-community mining. Personal and Ubiquitous Computing, 2014, 18, 351-353.	1.9	1
85	Sequence labeling with multiple annotators. Machine Learning, 2014, 95, 165-181.	3.4	58
86	Methods for pre-processing smartcard data to improve data quality. Transportation Research Part C: Emerging Technologies, 2014, 49, 43-58.	3.9	45
87	A Metamodel for Estimating Error Bounds in Real-Time Traffic Prediction Systems. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 1310-1322.	4.7	20
88	The Role of Context in Transport Prediction. IEEE Intelligent Systems, 2014, 29, 76-80.	4.0	13
89	Routing Policy Choice Set Generation in Stochastic Time-Dependent Networks. Transportation Research Record, 2014, 2466, 76-86.	1.0	10
90	Learning from multiple annotators: Distinguishing good from random labelers. Pattern Recognition Letters, 2013, 34, 1428-1436.	2.6	74

#	Article	IF	CITATIONS
91	Text analysis in incident duration prediction. Transportation Research Part C: Emerging Technologies, 2013, 37, 177-192.	3.9	94
92	Using Wikipedia to learn semantic feature representations of concrete concepts in neuroimaging experiments. Artificial Intelligence, 2013, 194, 240-252.	3.9	42
93	A user-centric mobility sensing system for transportation activity surveys. , 2013, , .		5
94	Future Mobility Survey. Transportation Research Record, 2013, 2354, 59-67.	1.0	171
95	Making sense of location context. , 2012, , .		3
96	Transportation activity analysis using smartphones. , 2012, , .		22
97	Using pattern recognition to identify habitual behavior in residential electricity consumption. Energy and Buildings, 2012, 49, 479-487.	3.1	107
98	A topographic latent source model for fMRI data. NeuroImage, 2011, 57, 89-100.	2.1	29
99	Information mapping with pattern classifiers: A comparative study. Neurolmage, 2011, 56, 476-496.	2.1	126
100	Acquiring semantic context for events from online resources. , 2010, , .		2
101	The Geography of Taste: Analyzing Cell-Phone Mobility and Social Events. Lecture Notes in Computer Science, 2010, , 22-37.	1.0	163
102	An approach to discover the potential for demand response in the domestic sector. , 2010, , .		7
103	Place in Perspective: Extracting Online Information about Points of Interest. Lecture Notes in Computer Science, 2010, , 61-72.	1.0	4
104	Perspectives on Semantics of the Place from Online Resources. , 2009, , .		6
105	Semantic enrichment of places: Ontology learning from web. International Journal of Knowledge-Based and Intelligent Engineering Systems, 2009, 13, 19-30.	0.7	9
106	An off-line map-matching algorithm for incomplete map databases. European Transport Research Review, 2009, 1, 107-124.	2.3	52
107	An Affective Intelligent Driving Agent: Driver's Trajectory and Activities Prediction. , 2009, , .		8
108	A holistic framework for the study of urban traces and the profiling of urban processes and dynamics. , 2009, , .		20

#	Article	IF	CITATIONS
109	Machine learning classifiers and fMRI: A tutorial overview. NeuroImage, 2009, 45, S199-S209.	2.1	1,425
110	Place Enrichment by Mining the Web. Lecture Notes in Computer Science, 2009, , 66-77.	1.0	11
111	Semantics of Place: Ontology Enrichment. Lecture Notes in Computer Science, 2008, , 342-351.	1.0	6
112	The Ejaki Project: A Quality of Service Regulator for Citizens. , 2007, , .		1
113	Conceptual Enrichment of Locations Pointed Out by the User. , 2007, , 346-353.		1
114	Enrichment of Automatically Generated Texts Using Metaphor. , 2007, , 944-954.		9
115	Experiments with free concept generation in Divago. Knowledge-Based Systems, 2006, 19, 459-470.	4.0	11
116	The importance of retrieval in creative design analogies. Knowledge-Based Systems, 2006, 19, 480-488.	4.0	31
117	REBUILDER: A CBR Approach to Knowledge Management in Software Design. Lecture Notes in Computer Science, 2004, , 31-42.	1.0	3
118	Learning to Decode Cognitive States from Brain Images. Machine Learning, 2004, 57, 145-175.	3.4	535
119	Using CBR for Semantic Analysis of Software Specifications. Lecture Notes in Computer Science, 2004, , 778-792.	1.0	2
120	Case-Based Adaptation for UML Diagram Reuse. Lecture Notes in Computer Science, 2004, , 678-686.	1.0	2
121	Evaluation of Case-Based Maintenance Strategies in Software Design. , 2003, , 186-200.		2
122	Noun Sense Disambiguation with WordNet for Software Design Retrieval. Lecture Notes in Computer Science, 2003, , 537-543.	1.0	8
123	Combining Case-Based Reasoning and Analogical Reasoning in Software Design. Lecture Notes in Computer Science, 2002, , 183-189.	1.0	4
124	Experiments on Case-Based Retrieval of Software Designs. Lecture Notes in Computer Science, 2002, , 118-132.	1.0	8
125	Using CBR for Automation of Software Design Patterns. Lecture Notes in Computer Science, 2002, , 534-548.	1.0	18
126	Clouds: A Module for Automatic Learning of Concept Maps. Lecture Notes in Computer Science, 2000, , 468-470.	1.0	0

#	Article	IF	CITATIONS
127	Darwinci: Creating Bridges to Creativity. Lecture Notes in Computer Science, 1998, , 239-248.	1.0	O
128	Experimental study of a similarity metric for retrieving pieces from structured plan cases: Its role in the originality of plan case solutions. Lecture Notes in Computer Science, 1997, , 575-586.	1.0	2
129	Plans as structured networks of hierarchically and temporally related case pieces. Lecture Notes in Computer Science, 1996, , 234-248.	1.0	6