Teruki SUGIYAMA

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2189355/publications.pdf Version: 2024-02-01

ΤΕΡΙΙΚΙ SHCIYAMA

#	Article	IF	CITATIONS
1	Laserâ€Induced NanoKneading (LINK): Deformation of Patterned Azopolymer Nanopillar Arrays via Photoâ€Fluidization. Macromolecular Rapid Communications, 2021, 42, 2000723.	2.0	3
2	Chiral Optical Force Generated by a Superchiral Near-Field of a Plasmonic Triangle Trimer as Origin of Giant Bias in Chiral Nucleation: A Simulation Study. Journal of Physical Chemistry C, 2021, 125, 6209-6221.	1.5	10
3	Crystallization from glacial acetic acid melt via laser ablation. Applied Physics Express, 2021, 14, 045503.	1.1	8
4	Growth Enhancement of Organic Nonlinear Optical Crystals by Femtosecond Laser Ablation. Journal of Physical Chemistry C, 2021, 125, 8391-8397.	1.5	5
5	Laser-assisted nanowetting (LAN): Hierarchical Nanocomposites containing polymer/gold nanorods on breath figure films. Polymer, 2021, 221, 123636.	1.8	1
6	Photon Momentum Dictates the Shape of Swarming Gold Nanoparticles in Optical Trapping at an Interface. Journal of Physical Chemistry C, 2021, 125, 19013-19021.	1.5	6
7	Cooperative Optical Trapping of Polystyrene Microparticle and Protein Forming a Submillimeter Linear Assembly of Microparticle. Journal of Physical Chemistry C, 2021, 125, 18988-18999.	1.5	8
8	Manipulation of dual fluorescence behavior in aggregation-induced emission enhancement of a tetraphenylethene-appended polymer by optical tweezers. Journal of Materials Chemistry C, 2021, 9, 7545-7554.	2.7	7
9	Optical Trapping-Induced New Polymorphism of β-Cyclodextrin in Unsaturated Solution. Crystal Growth and Design, 2021, 21, 6913-6923.	1.4	9
10	Plasmonic Manipulation of Sodium Chlorate Chiral Crystallization: Directed Chirality Transfer via Contact-Induced Polymorphic Transformation and Formation of Liquid Precursor. Crystal Growth and Design, 2020, 20, 5493-5507.	1.4	7
11	Anomalously Large Assembly Formation of Polystyrene Nanoparticles by Optical Trapping at the Solution Surface. Langmuir, 2020, 36, 14234-14242.	1.6	10
12	Plasmonic Manipulation-Controlled Chiral Crystallization of Sodium Chlorate. Journal of Physical Chemistry Letters, 2020, 11, 4422-4426.	2.1	29
13	Evolving Crystal Morphology of Potassium Chloride Controlled by Optical Trapping. Journal of Physical Chemistry C, 2020, 124, 6913-6921.	1.5	24
14	Bidirectional polymorphic conversion by focused femtosecond laser irradiation. Japanese Journal of Applied Physics, 2020, 59, SIIH02.	0.8	4
15	Spatiotemporal Dynamics of Aggregationâ€Induced Emission Enhancement Controlled by Optical Manipulation. Angewandte Chemie - International Edition, 2020, 59, 7063-7068.	7.2	19
16	Spatiotemporal Dynamics of Aggregationâ€Induced Emission Enhancement Controlled by Optical Manipulation. Angewandte Chemie, 2020, 132, 7129-7134.	1.6	5
17	Laserâ€Assisted Nanowetting: Selective Fabrication of Polymer/Gold Nanorod Arrays Using Anodic Aluminum Oxide Templates. Macromolecular Rapid Communications, 2020, 41, 2000035.	2.0	5
18	Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticles at an interface. Optics Express, 2020, 28, 27727.	1.7	21

#	Article	IF	CITATIONS
19	Micromanipulation of amyloplasts with optical tweezers in <i>Arabidopsis</i> stems. Plant Biotechnology, 2020, 37, 405-415.	0.5	8
20	Formation Mechanism and Fluorescence Characterization of a Transient Assembly of Nanoparticles Generated by Femtosecond Laser Trapping. Journal of Physical Chemistry C, 2019, 123, 27823-27833.	1.5	5
21	In situ reflection imaging and microspectroscopic study on three-dimensional crystal growth of L-phenylalanine under laser trapping. Applied Physics Express, 2019, 12, 112008.	1.1	4
22	Growth Promotion of Targeted Crystal Face by Nanoprocessing via Laser Ablation. Journal of Physical Chemistry C, 2019, 123, 24919-24926.	1.5	10
23	In Situ Microscopic Observation on Surface Kinetics in Optical Trapping-Induced Crystal Growth: Step Formation, Wetting Transition, and Nonclassical Growth. Crystal Growth and Design, 2019, 19, 4138-4150.	1.4	3
24	Spatiotemporal Dynamics of Laser-Induced Molecular Crystal Precursors Visualized by Particle Image Diffusometry. Journal of Physical Chemistry Letters, 2019, 10, 7452-7457.	2.1	8
25	Plasmonic Trapping-Induced Crystallization of Acetaminophen. Crystal Growth and Design, 2019, 19, 529-537.	1.4	11
26	Rapid localized crystallization of lysozyme by laser trapping. Physical Chemistry Chemical Physics, 2018, 20, 6034-6039.	1.3	17
27	Femtosecond Laser Trapping Dynamics of Nanoparticles: A Single Transient Assembly Formation Leading to Their Directional Ejection. Journal of Physical Chemistry C, 2018, 122, 13233-13242.	1.5	6
28	"Freezing―of NaClO ₃ Metastable Crystalline State by Optical Trapping in Unsaturated Microdroplet. Crystal Growth and Design, 2018, 18, 734-741.	1.4	19
29	Crystal Growth and Dissolution Dynamics of <scp>l</scp> -Phenylalanine Controlled by Solution Surface Laser Trapping. Crystal Growth and Design, 2018, 18, 7079-7087.	1.4	15
30	In Situ Observation of Chiral Symmetry Breaking in NaClO ₃ Chiral Crystallization Realized by Thermoplasmonic Micro-Stirring. Crystal Growth and Design, 2018, 18, 4230-4239.	1.4	10
31	Bubble generation and molecular crystallization at solution surface by intense continuous-wave laser irradiation. Applied Physics Express, 2018, 11, 085502.	1.1	Ο
32	Pseudopolymorph Control of <scp>l</scp> -Phenylalanine Achieved by Laser Trapping. Crystal Growth and Design, 2018, 18, 5417-5425.	1.4	25
33	Femtosecond laser trapping, assembling, and ejection dynamics of dielectric nanoparticles in solution. , 2018, , .		1
34	A Single Spherical Assembly of Protein Amyloid Fibrils Formed by Laser Trapping. Angewandte Chemie - International Edition, 2017, 56, 6739-6743.	7.2	22
35	A Single Spherical Assembly of Protein Amyloid Fibrils Formed by Laser Trapping. Angewandte Chemie, 2017, 129, 6843-6847.	1.6	3
36	Plasmonic Heating-Assisted Laser-Induced Crystallization from a NaClO ₃ Unsaturated Mother Solution. Crystal Growth and Design, 2017, 17, 809-818.	1.4	15

#	Article	IF	CITATIONS
37	Femtosecond-Laser-Enhanced Amyloid Fibril Formation of Insulin. Langmuir, 2017, 33, 8311-8318.	1.6	9
38	Enantioselective amplification on circularly polarized laser-induced chiral nucleation from a NaClO ₃ solution containing Ag nanoparticles. CrystEngComm, 2016, 18, 7441-7448.	1.3	27
39	Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface. Langmuir, 2016, 32, 12488-12496.	1.6	38
40	Two-Dimensional Growth Rate Control of <scp>l</scp> -Phenylalanine Crystal by Laser Trapping in Unsaturated Aqueous Solution. Crystal Growth and Design, 2016, 16, 953-960.	1.4	34
41	Reflection Microspectroscopic Study of Laser Trapping Assembling of Polystyrene Nanoparticles at Air/Solution Interface. Journal of Physical Chemistry C, 2016, 120, 15578-15585.	1.5	28
42	Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers. Optical Review, 2015, 22, 143-148.	1.2	4
43	Dynamics and Mechanism of Laser Trapping-Induced Crystal Growth of Hen Egg White Lysozyme. Crystal Growth and Design, 2015, 15, 4760-4767.	1.4	19
44	Laser trapping and assembling of nanoparticles at solution surface studied by reflection micro-spectroscopy. , 2015, , .		1
45	Laser trapping-induced crystallization ofl-phenylalanine through its high-concentration domain formation. Photochemical and Photobiological Sciences, 2014, 13, 254-260.	1.6	26
46	Crystal Growth of Lysozyme Controlled by Laser Trapping. Crystal Growth and Design, 2014, 14, 15-22.	1.4	23
47	Single femtosecond laser pulse-single crystal formation of glycine at the solution surface. Journal of Crystal Growth, 2013, 366, 101-106.	0.7	14
48	Laser Trapping and Crystallization Dynamics of <scp>l</scp> -Phenylalanine at Solution Surface. Journal of Physical Chemistry Letters, 2013, 4, 2436-2440.	2.1	41
49	Laser trapping dynamics of 200 nm-polystyrene particles at a solution surface. , 2013, , .		1
50	Laser Trapping Chemistry: From Polymer Assembly to Amino Acid Crystallization. Accounts of Chemical Research, 2012, 45, 1946-1954.	7.6	118
51	Formation, Dissolution, and Transfer Dynamics of a Millimeter-Scale Thin Liquid Droplet in Glycine Solution by Laser Trapping. Journal of Physical Chemistry C, 2012, 116, 6809-6816.	1.5	22
52	Selective Fabrication of α- and γ-Polymorphs of Glycine by Intense Polarized Continuous Wave Laser Beams. Crystal Growth and Design, 2012, 12, 2427-2434.	1.4	51
53	Glycine Crystallization in Solution by CW Laser-Induced Microbubble on Gold Thin Film Surface. ACS Applied Materials & Interfaces, 2012, 4, 1158-1163.	4.0	58
54	Laser trapping dynamics of L-alanine depending on the laser polarization. Proceedings of SPIE, 2012, , .	0.8	8

1

#	Article	IF	CITATIONS
55	Identification of small molecular compounds and fabrication of its aqueous solution by laser-ablation, expanding primordial cartilage. Osteoarthritis and Cartilage, 2011, 19, 233-241.	0.6	5
56	Laserâ€Induced Crystallization and Crystal Growth. Chemistry - an Asian Journal, 2011, 6, 2878-2889.	1.7	24
57	Fabrication of the smallest organic nanocolloids by a topâ€down method based on laser ablation. Chemical Record, 2011, 11, 54-58.	2.9	9
58	Wide-field Rayleigh scattering imaging and spectroscopy of gold nanoparticles in heavy water under laser trapping. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 187-193.	2.0	21
59	Laser-trapping assembling dynamics of molecules and proteins at surface and interface. Pure and Applied Chemistry, 2011, 83, 869-883.	0.9	25
60	Photochemical Reaction ofp-hydroxycinnamic-thiophenyl Ester in the Microcrystalline Stateâ€. Journal of Physical Chemistry B, 2010, 114, 14233-14240.	1.2	6
61	Nanoparticle preparation of quinacridone and β-carotene using near-infrared laser ablation of their crystals. Applied Physics A: Materials Science and Processing, 2010, 101, 591-596.	1.1	4
62	Single droplet formation and crystal growth in urea solution induced by laser trapping. Proceedings of SPIE, 2010, , .	0.8	2
63	Wide-field light scattering imaging of laser trapping dynamics of single gold nanoparticles in solution. , 2010, , .		4
64	Control of Crystal Polymorph of Glycine by Photon Pressure of a Focused Continuous Wave Near-Infrared Laser Beam. Journal of Physical Chemistry Letters, 2010, 1, 599-603.	2.1	56
65	Millimeter-Scale Dense Liquid Droplet Formation and Crystallization in Glycine Solution Induced by Photon Pressure. Journal of Physical Chemistry Letters, 2010, 1, 1321-1325.	2.1	47
66	Crystallization in Unsaturated Glycine/D ₂ O Solution Achieved by Irradiating a Focused Continuous Wave Near Infrared Laser. Crystal Growth and Design, 2010, 10, 4686-4688.	1.4	60
67	Nanosecond laser preparation of C60 aqueous nanocolloids. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 7-12.	2.0	29
68	Crystal Growth of Glycine Controlled by a Focused CW Near-infrared Laser Beam. Chemistry Letters, 2009, 38, 482-483.	0.7	26
69	Fabrication of fluorescent nanoparticles of dendronized perylenediimide by laser ablation in water. Applied Physics A: Materials Science and Processing, 2008, 93, 5-9.	1.1	32
70	Laser Fabrication and Spectroscopy of Organic Nanoparticles. Accounts of Chemical Research, 2008, 41, 1790-1798.	7.6	186
71	Laser fabrication and crystallization of nano materials. , 2008, , .		13

Laser fabrication of nanoparticles and crystals in solution. , 2008, , .

#	Article	IF	CITATIONS
73	Crystallization of Clycine by Photon Pressure of a Focused CW Laser Beam. Chemistry Letters, 2007, 36, 1480-1481.	0.7	147
74	Fullerene (C60) Nanostructures Having Interpenetrating Surfaces Prepared by Electrophoretic Deposition of C60 Nanoparticles in Water. Chemistry Letters, 2007, 36, 1160-1161.	0.7	19
75	Preparation and Photoconductive Property of Electrophoretically Deposited Film of Quinacridone Nanoparticles Prepared by Laser Ablation in Water. Japanese Journal of Applied Physics, 2007, 46, L733.	0.8	12
76	Study on Electrophoretic Deposition of Size-Controlled Quinacridone Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 14658-14663.	1.5	20
77	Size and Phase Control in Quinacridone Nanoparticle Formation by Laser Ablation in Water. Japanese Journal of Applied Physics, 2006, 45, 384-388.	0.8	42
78	Formation of 10 nm-sized Oxo(phtalocyaninato)vanadium(IV) Particles by Femtosecond Laser Ablation in Water. Chemistry Letters, 2004, 33, 724-725.	0.7	38
79	Succinimido 2-acetoxybenzoate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o80-o82.	0.2	1
80	Photochromism and Photomagnetism of Biindenylidene-Dione Derivative in a Single Crystalline Phase. Molecular Crystals and Liquid Crystals, 2002, 389, 33-37.	0.4	11
81	Intermolecular Interactions And Generation of Chirality in the Formation of Two-Component Molecular Crystals between Chloronitrobenzoic Acids and 4-Benzoylpyridine Or P-Anisidine. Molecular Crystals and Liquid Crystals, 2002, 389, 25-31.	0.4	4
82	Two-Component Molecular Crystals Composed of Nitrobenzoic Acids and Aromatic Or Heterocyclic Bases. Molecular Crystals and Liquid Crystals, 2002, 389, 17-23.	0.4	1
83	Photoinduced ground-state singlet biradical—novel insight into the photochromic compounds of biindenylidenediones. Chemical Communications, 2002, , 2328-2329.	2.2	36
84	Two-component molecular crystals composed of chloronitrobenzoic acids and 4-aminopyridine. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o242-o246.	0.4	10
85	Intermolecular interactions in the formation of two-component molecular crystals composed of chloronitrobenzoic acids and 4-benzoylpyridine. Journal of Molecular Structure, 2002, 611, 53-64.	1.8	21
86	Generation of Chirality by the Aggregation of Column Structures for Two-Component Molecular Crystals Composed of Chloronitrobenzoic Acids and p -Anisidine. Enantiomer, 2002, 7, 397-404.	0.5	7
87	A smectic T phase of 1,4-dialkyl-1,4-diazoniabicyclo[2.2.2]octane dibromides. Journal of Materials Chemistry, 2000, 10, 613-616.	6.7	38
88	Unraveling the threeâ€dimensional morphology and dynamics of the optically evolving polystyrene nanoparticle assembly using dualâ€objective lens microscopy. Journal of the Chinese Chemical Society, 0, , .	0.8	3
89	Lâ€serine polymorphism controlled by optical trapping with highâ€repetitionâ€rate femtosecond laser pulses. Journal of the Chinese Chemical Society, 0, , .	0.8	2