List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2189117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermophysical characterization and melting heat transfer analysis of an organic phase change material dispersed with GNP- Ag hybrid nanoparticles. Heat and Mass Transfer, 2022, 58, 1811-1828.	1.2	3
2	Convective heat transfer estimation of dilute metal oxide nanofluids in VUV surface tuned minichannel using Mach-Zehnder interferometry. Applied Thermal Engineering, 2021, 196, 117259.	3.0	5
3	Highly Efficient Amorphous Carbon Sphere-Based Superhydrophobic and Superoleophilic Sponges for Oil/Water Separation. Langmuir, 2021, 37, 12501-12511.	1.6	15
4	Characterization of thermophysical properties of nano-enhanced organic phase change materials using T-history method. Journal of Thermal Analysis and Calorimetry, 2020, 140, 2471-2484.	2.0	13
5	Convective heat transfer studies in dilute alumina and silica nanofluids flowing through a channel using Mach-Zehnder interferometry. Heat and Mass Transfer, 2020, 56, 1793-1809.	1.2	6
6	An investigation of Marangoni-Benard convection in water based nanofluids. Heat and Mass Transfer, 2019, 55, 791-809.	1.2	2
7	Computational Analysis of Wire-Bonded Micro Heat Pipe: Influence of Thermophysical Parameters. Journal of Thermophysics and Heat Transfer, 2018, 32, 925-932.	0.9	3
8	A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions. Heat and Mass Transfer, 2018, 54, 785-791.	1.2	10
9	Stability and Transient Performance of Vertical Heater Vertical Cooler Natural Circulation Loops with Metal Oxide Nanoparticle Suspensions. Heat Transfer Engineering, 2018, 39, 861-873.	1.2	17
10	An experimental investigation of the CO2 adsorption performance of graphene oxide forms. International Journal of Refrigeration, 2018, 96, 179-190.	1.8	9
11	Measurement of Open Flame Temperature of Nano Particle Additive Dispersed Diesel Using Digital Interferometry. Combustion Science and Technology, 2017, 189, 1813-1831.	1.2	1
12	An Experimental Investigation of the Refrigerant Adsorption Performance of Carbon Nanotube-Activated Carbon Mixtures. International Journal of Air-Conditioning and Refrigeration, 2017, 25, 1750017.	0.8	2
13	Liquid Layering and the Enhanced Thermal Conductivity of Ar-Cu Nanofluids: A Molecular Dynamics Study. , 2016, , .		5
14	Digital Interferometric Measurement of Forced Convection Fields in Compact Channels. International Journal of Optomechatronics, 2015, 9, 9-34.	3.3	6
15	Investigations on Replacement of Fins with Flat Heat Pipes for High Power LEDs. Procedia Engineering, 2015, 118, 654-661.	1.2	8
16	Numerical and experimental investigations on forced convection in meso-channels with irregular geometry of cross-section. International Journal of Heat and Mass Transfer, 2014, 70, 276-288.	2.5	4
17	OPTIMUM DESIGN OF MICROCHANNEL HEAT SINKS FOR ANNULAR FLOW WITH PHASE CHANGE. Journal of Enhanced Heat Transfer, 2014, 21, 373-395.	0.5	2
18	A computational model for predicting the mass transport in a CVD reactor for carbon nanotube synthesis. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	CITATIONS
19	Simulation and modeling of carbon nanotube synthesis: current trends and investigations. Nanotechnology Reviews, 2013, 2, 73-105.	2.6	8
20	Investigations on Forced Convection in a Mesochannel with Irregular Cross Section. Journal of Thermophysics and Heat Transfer, 2013, 27, 70-79.	0.9	1
21	A Computational Model for Predicting the Temperature Distribution Inside a CVD Reactor for Carbon Nanotube Synthesis. , 2013, , .		Ο
22	Heat Transfer Studies in Thermally Conducting and Electrically Insulating Nano-Oils in a Natural Circulation Loop. , 2013, , .		5
23	Flow Measurements in Metal Oxide-Nanoparticle Suspensions in a Rectangular Natural Circulation Loop. Advanced Materials Research, 2013, 685, 145-149.	0.3	3
24	3D Heat Transfer Analysis of a Miniature Copper-Water Vapor Chamber with Wicked Pillars Array. ISRN Mechanical Engineering, 2013, 2013, 1-10.	0.9	6
25	SYMMETRICAL POROUS SURFACES FOR BOILING ENHANCEMENT IN MINI-CHANNELS: EFFECTS ON LIQUID PRESSURE DROP. Journal of Enhanced Heat Transfer, 2013, 20, 73-81.	O.5	3
26	Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems – An experimental investigation. International Journal of Refrigeration, 2012, 35, 1989-1996.	1.8	158
27	Investigations on Forced Convection in Compact Passages With Surface Irregularities. Heat Transfer Engineering, 2012, 33, 1105-1119.	1.2	3
28	Molecular Dynamic Simulation of Thermal Conductivity of Electrically Insulating Thermal Nano-Oil. , 2012, , .		2
29	Investigations on Transient Natural Convection in Boron Nitride-Mineral Oil Nanofluid Systems. , 2012, , .		5
30	A review of experimental investigations on thermal phenomena in nanofluids. Nanoscale Research Letters, 2011, 6, 377.	3.1	98
31	Characterization of convective heat transfer in channels of small cross section using digital interferometry. Heat and Mass Transfer, 2011, 47, 505-518.	1.2	6
32	Molecular Dynamics Modeling of Latent Heat Enhancement in Nanofluids. International Journal of Thermophysics, 2010, 31, 1131-1144.	1.0	17
33	Experimental Investigations on the Effects of Cerium Oxide Nanoparticle Fuel Additives on Biodiesel. Advances in Mechanical Engineering, 2010, 2, 581407.	0.8	295
34	Convective Heat Transfer Studies in Mini-Channels Using Digital Interferometry. , 2009, , .		0
35	Computational Analysis of Fluid Flow and Heat Transfer in Wire-Sandwiched Microheat Pipes. Journal of Thermophysics and Heat Transfer, 2009, 23, 741-751.	0.9	11
36	Experimental Analysis of the Nusselt Number for Jet Impingement on a Flat Plate. , 2009, , .		0

#	Article	IF	CITATIONS
37	Molecular dynamics modeling of thermal conductivity enhancement in metal nanoparticle suspensions. International Communications in Heat and Mass Transfer, 2008, 35, 867-872.	2.9	88
38	Digital interferometry: techniques and trends for fluid measurement. Heat and Mass Transfer, 2008, 44, 535-546.	1.2	25
39	Digital Interferometric Measurement of Forced Convection Heat Transfer in a Miniature Rectangular Channel. Experimental Heat Transfer, 2008, 21, 314-333.	2.3	17
40	An Experimental Investigation of the Boiling Performance of Water-Based Nanofluids. , 2008, , .		10
41	Microchannel Optimization for Heat Dissipation From a Solid Substrate. , 2008, , .		1
42	Molecular Dynamics Modeling of the Effect of Thermal Interface Material on Thermal Contact Conductance. , 2008, , .		0
43	Numerical Modeling of Micro Fin Arrays Using Slip Flow and Temperature Jump Boundary Conditions. , 2008, , .		0
44	A Hybrid Heat Flux Distribution Model for Jet Impingment on a Flat Plate. , 2008, , .		0
45	Experimental Investigation of Phase Change Phenomena in Nanofluids. , 2007, , 859.		5
46	An Investigation of the Effect of Nanoparticles on the Effectiveness of a Heat Exchanger. , 2007, , 589.		0
47	An Investigation of the Effect of Addition of Nanoparticles on the Properties of Lubricating Oil. , 2007, , 329.		7
48	Comparison of Performance of Aluminum and Titanium Heat Pipes. , 2007, , 873.		0
49	A review and comparative study of the investigations on micro heat pipes. International Journal of Energy Research, 2007, 31, 664-688.	2.2	96
50	A quasi-3D analysis of the thermal performance of a flat heat pipe. International Journal of Heat and Mass Transfer, 2007, 50, 4286-4296.	2.5	47
51	Thermal response of a flat heat pipe sandwich structure to a localized heat flux. International Journal of Heat and Mass Transfer, 2006, 49, 4070-4081.	2.5	44
52	An Investigation Into the Effect of Inclusion of Cerium Oxide Nanoparticles on the Physicochemical Properties of Diesel Oil. , 2006, , 333.		7
53	Dimensionless Governing Equations for Vapor and Liquid Flow Analysis of Heat Pipes. Journal of Thermophysics and Heat Transfer, 2006, 20, 140-144.	0.9	8
54	Review of Condensation Heat Transfer in Microgravity Environments. Journal of Thermophysics and Heat Transfer, 2006, 20, 353-360.	0.9	14

#	Article	IF	CITATIONS
55	Numerical Study of Heat Pipe Heat Spreaders with Large Periodic Heat Input. Journal of Thermophysics and Heat Transfer, 2006, 20, 835-841.	0.9	6
56	Development of an Interferometric Method for Measurement of Thermal Conductivity of a Transparent Medium. , 2006, , .		2
57	Analysis of the Evaporation Process in a High Heat Flux Flat Plate Heat Pipe. , 2005, , 27.		Ο
58	Experimental Investigations on Fluid Flow and Heat Transfer Through Rectangular Mini Channels. , 2005, , 113.		1
59	TRANSPORT IN MICROCHANNELS - A CRITICAL REVIEW. Annual Review of Heat Transfer, 2003, 13, 1-50.	0.3	224
60	A COMPARATIVE ANALYSIS OF STUDIES ON HEAT TRANSFER AND FLUID FLOW IN MICROCHANNELS. Microscale Thermophysical Engineering, 2001, 5, 293-311.	1.2	357
61	Recent Advances in the Modeling and Applications of Nonconventional Heat Pipes. Advances in Heat Transfer, 2001, 35, 249-308.	0.4	27
62	Investigations on Transient and Steady-State Performance of a Micro Heat Pipe. Journal of Thermophysics and Heat Transfer, 2000, 14, 161-169.	0.9	33
63	Natural convection heat transfer from a thin rectangular fin with a line source at the base — a finite difference solution. Heat and Mass Transfer, 1996, 31, 127-135.	1.2	3
64	Natural convection heat transfer from a thin rectangular fin with a line source at the base - a finite difference solution. Heat and Mass Transfer, 1996, 31, 127-135.	1.2	0
65	Experimental investigations on a 1–2 heat exchanger with wire-wound tubes. Heat and Mass Transfer, 1994, 29, 211-217.	0.2	1
66	Differential interferometry in heat transfer. Sadhana - Academy Proceedings in Engineering Sciences, 1990, 15, 105-128.	0.8	9
67	Experimental studies on steady free convection heat transfer from fins and fin arrays. Heat and Mass Transfer, 1990, 25, 345-352.	0.2	37
68	Experimental analysis of unsteady free convection heat transfer from horizontal fin arrays. Heat and Mass Transfer, 1989, 24, 155-160.	0.2	34
69	Microscale and Nanoscale Heat Transfer. , 0, , .		63