
Qing-Dong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2188882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Migratory and anti-fibrotic programmes define the regenerative potential of human cardiac progenitors. Nature Cell Biology, 2022, 24, 659-671.	4.6	21
2	Phenotypic screen identifies FOXO inhibitor to counteract maturation and promote expansion of human iPS cell-derived cardiomyocytes. Bioorganic and Medicinal Chemistry, 2022, 65, 116782.	1.4	3
3	Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science, 2021, 371, .	6.0	128
4	A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell, 2021, 28, 1160-1176.e7.	5.2	74
5	Phospholamban antisense oligonucleotides improve cardiac function in murine cardiomyopathy. Nature Communications, 2021, 12, 5180.	5.8	24
6	Cell proliferation fate mapping reveals regional cardiomyocyte cell-cycle activity in subendocardial muscle of left ventricle. Nature Communications, 2021, 12, 5784.	5.8	33
7	Seamless Genetic Recording of Transiently Activated Mesenchymal Gene Expression in Endothelial Cells During Cardiac Fibrosis. Circulation, 2021, 144, 2004-2020.	1.6	25
8	Discovery of retinoic acid receptor agonists as proliferators of cardiac progenitor cells through a phenotypic screening approach. Stem Cells Translational Medicine, 2020, 9, 47-60.	1.6	21
9	Aligned nanofiber scaffolds improve functionality of cardiomyocytes differentiated from human induced pluripotent stem cell-derived cardiac progenitor cells. Scientific Reports, 2020, 10, 13575.	1.6	32
10	A genetic system for tissue-specific inhibition of cell proliferation. Development (Cambridge), 2020, 147, .	1.2	10
11	Reassessment of c-Kit ⁺ Cells for Cardiomyocyte Contribution in Adult Heart. Circulation, 2019, 140, 164-166.	1.6	40
12	Genetic Tracing Identifies Early Segregation of the Cardiomyocyte and Nonmyocyte Lineages. Circulation Research, 2019, 125, 343-355.	2.0	29
13	CRISPR-Knockout Screen Identifies Dmap1 as a Regulator of Chemically Induced Reprogramming and Differentiation of Cardiac Progenitors. Stem Cells, 2019, 37, 958-972.	1.4	11
14	High-content phenotypic assay for proliferation of human iPSC-derived cardiomyocytes identifies L-type calcium channels as targets. Journal of Molecular and Cellular Cardiology, 2019, 127, 204-214.	0.9	20
15	Cardiac-Specific Overexpression of Oxytocin Receptor Leads to Cardiomyopathy in Mice. Journal of Cardiac Failure, 2018, 24, 470-478.	0.7	8
16	Genetic Targeting of Organ-Specific Blood Vessels. Circulation Research, 2018, 123, 86-99.	2.0	46
17	Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nature Biomedical Engineering, 2017, 1, .	11.6	86
18	Identification of a hybrid myocardial zone in the mammalian heart after birth. Nature Communications, 2017, 8, 87.	5.8	67

QING-DONG WANG

#	Article	IF	CITATIONS
19	Enhancing the precision of genetic lineage tracing using dual recombinases. Nature Medicine, 2017, 23, 1488-1498.	15.2	188
20	Insulin-Like Growth Factor 1 Receptor-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury. Circulation, 2017, 135, 59-72.	1.6	74
21	Phenotypic Screen for Cardiac Regeneration Identifies Molecules with Differential Activity in Human Epicardium-Derived Cells versus Cardiac Fibroblasts. ACS Chemical Biology, 2017, 12, 132-141.	1.6	17
22	Preexisting endothelial cells mediate cardiac neovascularization after injury. Journal of Clinical Investigation, 2017, 127, 2968-2981.	3.9	146
23	Comparative transcriptomic analysis identifies genes differentially expressed in human epicardial progenitors and hiPSC-derived cardiac progenitors. Physiological Genomics, 2016, 48, 771-784.	1.0	2
24	Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Research, 2016, 26, 119-130.	5.7	122
25	Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor- <i>β</i> Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation. Stem Cells Translational Medicine, 2016, 5, 164-174.	1.6	33
26	c-kit+ cells adopt vascular endothelial but not epithelial cell fates during lung maintenance and repair. Nature Medicine, 2015, 21, 866-868.	15.2	63
27	Inefficacy of a Highly Selective Tâ€Type Calcium Channel Blocker in Preventing Atrial Fibrillation Related Remodeling. Journal of Cardiovascular Electrophysiology, 2014, 25, 531-536.	0.8	3
28	Heart Regeneration: Opportunities and Challenges for Drug Discovery with Novel Chemical and Therapeutic Methods or Agents. Angewandte Chemie - International Edition, 2014, 53, 4056-4075.	7.2	36
29	Discovery of N-[[1-[2-(tert-butylcarbamoylamino)ethyl]-4-(hydroxymethyl)-4-piperidyl]methyl]-3,5-dichloro-benzamide as a selective T-type calcium channel (Cav3.2) inhibitor. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 119-124.	1.0	5
30	Discovery of N-(1-adamantyl)-2-(4-alkylpiperazin-1-yl)acetamide derivatives as T-type calcium channel (Cav3.2) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5557-5561.	1.0	7
31	Impedance-Based Detection of Beating Rhythm and Proarrhythmic Effects of Compounds on Stem Cell-Derived Cardiomyocytes. Assay and Drug Development Technologies, 2011, 9, 589-599.	0.6	89
32	Myocardial regeneration with stem cells: Pharmacological possibilities for efficacy enhancement. Pharmacological Research, 2006, 53, 331-340.	3.1	26
33	Murine models for the study of congestive heart failure: Implications for understanding molecular mechanisms and for drug discovery. Journal of Pharmacological and Toxicological Methods, 2004, 50, 163-174.	0.3	26
34	Pharmacological possibilities for protection against myocardial reperfusion injury. Cardiovascular Research, 2002, 55, 25-37.	1.8	144
35	Time-dependent Cardioprotection With Calcium Antagonism and Experimental Studies With Clevidipine in Ischemic-reperfused Pig Hearts: Part I. Journal of Cardiovascular Pharmacology, 2002, 40, 228-234.	0.8	15
36	Time-dependent Cardioprotection With Calcium Antagonism and Experimental Studies With Clevidipine in Ischemic-reperfused Pig Hearts: Part II. Journal of Cardiovascular Pharmacology, 2002, 40, 339-345.	0.8	25

QING-DONG WANG

#	Article	IF	CITATIONS
37	Relationship between ischaemic time and ischaemia/reperfusion injury in isolated Langendorff-perfused mouse hearts. Acta Physiologica Scandinavica, 2001, 171, 123-128.	2.3	23
38	Calcium Antagonist Protects the Myocardium from Reperfusion Injury by Interfering with Mechanisms Directly Related to Reperfusion: An Experimental Study with the Ultrashort-Acting Calcium Antagonist Clevidipine. Journal of Cardiovascular Pharmacology, 2000, 36, 338-343.	0.8	27
39	The role of theL-arginine/nitric oxide pathway in myocardial ischaemic and reperfusion injury. Acta Physiologica Scandinavica, 1999, 167, 151-159.	2.3	25
40	The angiotensin II AT1 receptor antagonist candesartan at antihypertensive plasma concentrations reduces damage induced by ischemia-reperfusion. Cardiovascular Drugs and Therapy, 1999, 13, 347-354.	1.3	10
41	Effects of the insurmountable angiotensin AT1 receptor antagonist candesartan and the surmountable antagonist losartan on ischemia/reperfusion injury in rat hearts. European Journal of Pharmacology, 1999, 380, 13-21.	1.7	15
42	Cardiac inotropic vs. chronotropic selectivity of isradipine, nifedipine and clevidipine, a new ultrashort-acting dihydropyridine. European Journal of Pharmacology, 1999, 380, 123-128.	1.7	14
43	The Angiotensin II AT1-Receptor Antagonist Candesartan Improves Functional Recovery and Reduces the No-Reflow Area in Reperfused Ischemic Rat Hearts. Journal of Cardiovascular Pharmacology, 1999, 34, 78-81.	0.8	18
44	Combination of a Calcium Antagonist, a Lipid-Peroxidation Inhibitor, and an Angiotensin AT1-Receptor Antagonist Provides Additive Myocardial Infarct Size-Limiting Effect in Pigs. Journal of Cardiovascular Pharmacology, 1999, 34, 512-517.	0.8	7
45	Myocardioprotective effects of felodipine in an antihypertensive dosage: an experimental study in pigs. Cardiovascular Drugs and Therapy, 1998, 12, 37-45.	1.3	4
46	Coronary thrombosis/thrombolysis in pigs: effects of heparin, asa, and the thrombin inhibitor inogatran. Journal of Pharmacological and Toxicological Methods, 1998, 39, 81-89.	0.3	4
47	The Lipid Peroxidation Inhibitor Indenoindole H290/51 Protects Myocardium at Risk of Injury Induced by Ischemia-Reperfusion. Free Radical Biology and Medicine, 1998, 24, 726-731.	1.3	10
48	The novel nonâ€peptide selective endothelin A receptor antagonist LU 135 252 protects against myocardial ischaemic and reperfusion injury in the pig. Acta Physiologica Scandinavica, 1998, 163, 131-137.	2.3	20
49	Contribution of endothelin to the coronary vasoconstriction in the isolated rat heart induced by nitric oxide synthase inhibition. Acta Physiologica Scandinavica, 1998, 163, 325-330.	2.3	26
50	The endothelin A receptor antagonist LU 135252 protects the myocardium from neutrophil injury during ischaemia/reperfusion. Cardiovascular Research, 1998, 39, 674-682.	1.8	32
51	Angiotensin II Type 1 Receptor Blockade with Candesartan Protects the Porcine Myocardium from Reperfusion-Induced Injury. Journal of Cardiovascular Pharmacology, 1998, 32, 231-238.	0.8	25
52	Endothelin in myocardial ischaemia and reperfusion. Cardiovascular Research, 1997, 33, 518-526.	1.8	103
53	L-Arginine Enhances Functional Recovery and Ca2+-Dependent Nitric Oxide Synthase Activity After Ischemia and Reperfusion in the Rat Heart. Journal of Cardiovascular Pharmacology, 1997, 29, 291-296.	0.8	46
54	Coronary venous drug infusion in the ischaemic-reperfused isolated rat heart. Cardiovascular Research, 1996, 31, 82-92.	1.8	2

QING-DONG WANG

#	Article	IF	CITATIONS
55	Role of I -arginine in preventing myocardial and endothelial injury following ischaemia/reperfusion in the rat isolated heart. Acta Physiologica Scandinavica, 1996, 156, 37-44.	2.3	39
56	Antithrombotic activity of inogatran, a new low-molecular-weight inhibitor of thrombin, in a closed-chest porcine model of coronary artery thrombosis. Cardiovascular Research, 1996, 32, 320-327.	1.8	16
57	Myocardial Release of Endothelin (ET) and Enhanced ETA Receptor-Mediated Coronary Vasoconstriction After Coronary Thrombosis and Thrombolysis in Pigs. Journal of Cardiovascular Pharmacology, 1995, 26, 770-776.	0.8	32
58	Beneficial Effects of H290/51, a New Lipid Peroxidation Inhibitor, on Functional Recovery After Ischemia and Reperfusion in Isolated Cold-Arrested Rat Hearts. Journal of Cardiovascular Pharmacology, 1995, 25, 924-929.	0.8	2
59	Local overflow and enhanced tissue content of endothelin following myocardial ischaemia and reperfusion in the pig: modulation by L-arginine. Cardiovascular Research, 1995, 29, 44-49.	1.8	43
60	Beneficial effects of the endothelin receptor antagonist bosentan on myocardial and endothelial injury following ischaemia/reperfusion in the rat. European Journal of Pharmacology, 1995, 283, 161-168.	1.7	45
61	Protective effects of non-peptide endothelin receptor antagonist bosentan on myocardial ischaemic and reperfusion injury in the pig. Cardiovascular Research, 1995, 29, 805-12.	1.8	12
62	Local overflow and enhanced tissue content of endothelin following myocardial ischaemia and reperfusion in the pig: modulation by L-arginine. Cardiovascular Research, 1995, 29, 44-9.	1.8	28
63	The nonpeptide endothelin receptor antagonist bosentan enhances myocardial recovery and endothelial function during reperfusion of the ischemic rat heart. Journal of Cardiovascular Pharmacology, 1995, 26 Suppl 3, S445-7.	0.8	3
64	Characterization of endothelin-1-induced vascular effects in the rat heart by using endothelin receptor antagonists. European Journal of Pharmacology, 1994, 271, 25-30.	1.7	32
65	The protective effect of L-arginine on myocardial injury and endothelial function following ischaemia and reperfusion in the pig. European Heart Journal, 1994, 15, 1712-1719.	1.0	55