Toby James Phesse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2187989/publications.pdf

Version: 2024-02-01

42 papers

3,915 citations

218592 26 h-index 42 g-index

44 all docs

44 docs citations

44 times ranked 7411 citing authors

#	Article	IF	CITATIONS
1	gp130-Mediated Stat3 Activation in Enterocytes Regulates Cell Survival and Cell-Cycle Progression during Colitis-Associated Tumorigenesis. Cancer Cell, 2009, 15, 91-102.	7.7	852
2	Myc deletion rescues Apc deficiency in the small intestine. Nature, 2007, 446, 676-679.	13.7	530
3	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	13.5	492
4	Rapid Loss of Intestinal Crypts upon Conditional Deletion of the Wnt/Tcf-4 Target Gene c- Myc. Molecular and Cellular Biology, 2006, 26, 8418-8426.	1.1	224
5	Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling. Developmental Cell, 2010, 19, 259-269.	3.1	176
6	Liver Zonation Occurs Through a β-Catenin–Dependent, c-Myc–Independent Mechanism. Gastroenterology, 2009, 136, 2316-2324.e3.	0.6	142
7	IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nature Communications, 2019, 10, 2735.	5.8	139
8	Frizzled7 Functions as a Wnt Receptor in Intestinal Epithelial Lgr5+ Stem Cells. Stem Cell Reports, 2015, 4, 759-767.	2.3	114
9	PHLDA1 Expression Marks the Putative Epithelial Stem Cells and Contributes to Intestinal Tumorigenesis. Cancer Research, 2011, 71, 3709-3719.	0.4	86
10	Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell, 2020, 27, 646-662.e7.	5.2	82
11	Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo. Cell Death and Differentiation, 2014, 21, 956-966.	5.0	78
12	<i>Frizzled-7</i> Is Required for Wnt Signaling in Gastric Tumors with and Without <i>Apc</i> Mutations. Cancer Research, 2019, 79, 970-981.	0.4	78
13	Frizzled7: A Promising Achilles' Heel for Targeting the Wnt Receptor Complex to Treat Cancer. Cancers, 2016, 8, 50.	1.7	73
14	Identification of <i>Pik3ca</i> Mutation as a Genetic Driver of Prostate Cancer That Cooperates with <i>Pten</i> Loss to Accelerate Progression and Castration-Resistant Growth. Cancer Discovery, 2018, 8, 764-779.	7.7	72
15	K-ras and Wnt Signaling Synergize to Accelerate Prostate Tumorigenesis in the Mouse. Cancer Research, 2009, 69, 94-101.	0.4	71
16	Dual Targeting of Bromodomain and Extraterminal Domain Proteins, and WNT or MAPK Signaling, Inhibits c-MYC Expression and Proliferation of Colorectal Cancer Cells. Molecular Cancer Therapeutics, 2016, 15, 1217-1226.	1.9	71
17	Partial inhibition of gp130-Jak-Stat3 signaling prevents Wnt–β-catenin–mediated intestinal tumor growth and regeneration. Science Signaling, 2014, 7, ra92.	1.6	68
18	Wnt Signalling in Gastrointestinal Epithelial Stem Cells. Genes, 2018, 9, 178.	1.0	64

#	Article	IF	Citations
19	Wnt Signaling in Cancer: Not a Binary ON:OFF Switch. Cancer Research, 2019, 79, 5901-5906.	0.4	50
20	Scrib heterozygosity predisposes to lung cancer and cooperates with KRas hyperactivation to accelerate lung cancer progression in vivo. Oncogene, 2014, 33, 5523-5533.	2.6	48
21	Targeting Wnt Signaling for the Treatment of Gastric Cancer. International Journal of Molecular Sciences, 2020, 21, 3927.	1.8	46
22	Deficiency of Mbd2 Attenuates Wnt Signaling. Molecular and Cellular Biology, 2008, 28, 6094-6103.	1.1	43
23	Wnt is necessary for mesenchymal to epithelial transition in colorectal cancer cells. Developmental Dynamics, 2018, 247, 521-530.	0.8	36
24	Winding back Wnt signalling: potential therapeutic targets for treating gastric cancers. British Journal of Pharmacology, 2017, 174, 4666-4683.	2.7	34
25	Therapeutic Inhibition of Jak Activity Inhibits Progression of Gastrointestinal Tumors in Mice. Molecular Cancer Therapeutics, 2014, 13, 468-474.	1.9	31
26	The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Molecular Cancer, 2015, 14, 169.	7.9	31
27	<i>Mbd2</i> enables tumourigenesis within the intestine while preventing tumourâ€promoting inflammation. Journal of Pathology, 2018, 245, 270-282.	2.1	24
28	Physiological expression of the PI3K-activating mutation <i>Pik3ca</i> H1047R combines with <i>Apc</i> loss to promote development of invasive intestinal adenocarcinomas in mice. Biochemical Journal, 2014, 458, 251-258.	1.7	20
29	Loss of the Wnt receptor Frizzled7 in the gastric epithelium is deleterious and triggers rapid repopulation in vivo. DMM Disease Models and Mechanisms, 2017, 10, 971-980.	1.2	20
30	Lgr5 joins the club of gastric stem cell markers in the corpus. Nature Cell Biology, 2017, 19, 752-754.	4.6	19
31	The tyrosine kinase Lyn limits the cytokine responsiveness of plasma cells to restrict their accumulation in mice. Science Signaling, 2014, 7, ra77.	1.6	17
32	Exploring the Wnt Pathway as a Therapeutic Target for Prostate Cancer. Biomolecules, 2022, 12, 309.	1.8	14
33	Cited1 Deficiency Suppresses Intestinal Tumorigenesis. PLoS Genetics, 2013, 9, e1003638.	1.5	13
34	Isolation and Culture of Adult Intestinal, Gastric, and Liver Organoids for Cre-recombinase-Mediated Gene Deletion. Methods in Molecular Biology, 2016, 1576, 123-133.	0.4	12
35	The Hepatitis B Virus Pre-Core Protein p22 Activates Wnt Signaling. Cancers, 2020, 12, 1435.	1.7	10
36	<i>Lect2</i> deficiency is characterised by altered cytokine levels and promotion of intestinal tumourigenesis. Oncotarget, 2018, 9, 36430-36443.	0.8	9

#	Article	IF	CITATIONS
37	The Central Role of Wnt Signaling and Organoid Technology in Personalizing Anticancer Therapy. Progress in Molecular Biology and Translational Science, 2018, 153, 299-319.	0.9	7
38	Responding to R-Spondin: Slit2 Potentiates Intestinal Regeneration. Cell Stem Cell, 2013, 13, 512-514.	5.2	5
39	Defining key concepts of intestinal and epithelial cancer biology through the use of mouse models. Carcinogenesis, 2017, 38, 953-965.	1.3	5
40	Frizzled7 Activates β-Catenin-Dependent and β-Catenin-Independent Wnt Signalling Pathways During Developmental Morphogenesis: Implications for Therapeutic Targeting in Colorectal Cancer. Handbook of Experimental Pharmacology, 2021, 269, 251-277.	0.9	3
41	The Function of Lgr5+ Cells in the Gastric Antrum Does Not Require Fzd7 or Myc In Vivo. Biomedicines, 2019, 7, 50.	1.4	2
42	FXR regulates intestinal stem cells response to bile acids in a high fat diet. Biotarget, 2019, 3, 12-12.	0.5	0