

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2187219/publications.pdf Version: 2024-02-01

\\/FLL

#	Article	IF	CITATIONS
1	Secretogranin III stringently regulates pathological but not physiological angiogenesis in oxygen-induced retinopathy. Cellular and Molecular Life Sciences, 2022, 79, 63.	5.4	8
2	Comparative ligandomics implicates secretogranin III as a diseaseâ€restricted angiogenic factor in laserâ€induced choroidal neovascularization. FEBS Journal, 2022, 289, 3521-3534.	4.7	3
3	Selectively targeting diseaseâ€restricted secretogranin III to alleviate choroidal neovascularization. FASEB Journal, 2022, 36, e22106.	0.5	7
4	Neurovascular abnormalities in retinopathy of prematurity and emerging therapies. Journal of Molecular Medicine, 2022, 100, 817-828.	3.9	7
5	Optimal Efficacy and Safety of Humanized Anti-Scg3 Antibody to Alleviate Oxygen-Induced Retinopathy. International Journal of Molecular Sciences, 2022, 23, 350.	4.1	2
6	Concurrent Physiological and Pathological Angiogenesis in Retinopathy of Prematurity and Emerging Therapies. International Journal of Molecular Sciences, 2021, 22, 4809.	4.1	30
7	Neurovascular regulation in diabetic retinopathy and emerging therapies. Cellular and Molecular Life Sciences, 2021, 78, 5977-5985.	5.4	24
8	Comparative Ligandomic Analysis of Human Lung Epithelial Cells Exposed to PM. Biomedical and Environmental Sciences, 2020, 33, 165-173.	0.2	3
9	Function-first ligandomics for ocular vascular research and drug target discovery. Experimental Eye Research, 2019, 182, 57-64.	2.6	12
10	Secretogranin III as a novel target for the therapy of choroidal neovascularization. Experimental Eye Research, 2019, 181, 120-126.	2.6	14
11	Anti-secretogranin III therapy of oxygen-induced retinopathy with optimal safety. Angiogenesis, 2019, 22, 369-382.	7.2	21
12	Ligandomics: a paradigm shift in biological drug discovery. Drug Discovery Today, 2018, 23, 636-643.	6.4	15
13	Secretogranin III: a diabetic retinopathy-selective angiogenic factor. Cellular and Molecular Life Sciences, 2018, 75, 635-647.	5.4	21
14	Secretogranin III promotes angiogenesis through MEK/ERK signaling pathway. Biochemical and Biophysical Research Communications, 2018, 495, 781-786.	2.1	17
15	Pathogenic role and therapeutic potential of pleiotrophin in mouse models of ocular vascular disease. Angiogenesis, 2017, 20, 479-492.	7.2	15
16	Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy. Journal of Experimental Medicine, 2017, 214, 1029-1047.	8.5	39
17	Mesd extrinsically promotes phagocytosis by retinal pigment epithelial cells. Cell Biology and Toxicology, 2016, 32, 347-358.	5.3	3
18	The regulatory role of hepatoma-derived growth factor as an angiogenic factor in the eye. Molecular Vision, 2016, 22, 374-86.	1.1	7

Wei Li

#	Article	IF	CITATIONS
19	Lyar Is a New Ligand for Retinal Pigment Epithelial Phagocytosis. Journal of Cellular Biochemistry, 2015, 116, 2177-2187.	2.6	2
20	ABCF1 extrinsically regulates retinal pigment epithelial cell phagocytosis. Molecular Biology of the Cell, 2015, 26, 2311-2320.	2.1	29
21	Reticulocalbin-1 Facilitates Microglial Phagocytosis. PLoS ONE, 2015, 10, e0126993.	2.5	13
22	Hepatoma-Derived Growth Factor-Related Protein-3 Is a Novel Angiogenic Factor. PLoS ONE, 2015, 10, e0127904.	2.5	22
23	Phagocyte dysfunction, tissue aging and degeneration. Ageing Research Reviews, 2013, 12, 1005-1012.	10.9	91
24	ORF phage display to identify cellular proteins with different functions. Methods, 2012, 58, 2-9.	3.8	15
25	Tubby regulates microglial phagocytosis through MerTK. Journal of Neuroimmunology, 2012, 252, 40-48.	2.3	30
26	Eatâ€me signals: Keys to molecular phagocyte biology and "Appetite†control. Journal of Cellular Physiology, 2012, 227, 1291-1297.	4.1	84
27	Galectinâ€3 is a new MerTKâ€specific eatâ€me signal. Journal of Cellular Physiology, 2012, 227, 401-407.	4.1	151
28	Unraveling the Molecular Mystery of Retinal Pigment Epithelium Phagocytosis. Advances in Experimental Medicine and Biology, 2012, 723, 693-699.	1.6	2
29	Identification of Hnrph3 as an autoantigen for acute anterior uveitis. Clinical Immunology, 2011, 138, 60-66.	3.2	19
30	Efficient identification of tubbyâ€binding proteins by an improved system of T7 phage display. Journal of Molecular Recognition, 2010, 23, 74-83.	2.1	48
31	New perspective for phage display as an efficient and versatile technology of functional proteomics. Applied Microbiology and Biotechnology, 2010, 85, 909-919.	3.6	51
32	Identification of tubby and tubby-like protein 1 as eat-me signals by phage display. Experimental Cell Research, 2010, 316, 245-257.	2.6	41
33	Tubby and tubby-like protein 1 are new MerTK ligands for phagocytosis. EMBO Journal, 2010, 29, 3898-3910.	7.8	150
34	Can Phage Display Be Used as a Tool to Functionally Identify Endogenous Eat-Me Signals in Phagocytosis?. Journal of Biomolecular Screening, 2009, 14, 653-661.	2.6	20
35	Efficient identification of phosphatidylserine-binding proteins by ORF phage display. Biochemical and Biophysical Research Communications, 2009, 386, 197-201.	2.1	34
36	Identification of two calcineurin B-binding proteins: tubulin and heat shock protein 60. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1599, 72-81.	2.3	37

Wei	L

#	Article	IF	CITATIONS
37	Three distinct messenger RNA distribution patterns in human jejunal enterocytes. Gastroenterology, 1998, 115, 86-92.	1.3	15