
Gabriele Villarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2186896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The changing nature of flooding across the centralÂUnited States. Nature Climate Change, 2015, 5, 250-254.	8.1	400
2	On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resources Research, 2009, 45, .	1.7	376
3	Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature, 2018, 563, 384-388.	13.7	375
4	Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. Journal of Climate, 2015, 28, 7203-7224.	1.2	371
5	Monitoring and Understanding Changes in Heat Waves, Cold Waves, Floods, and Droughts in the United States: State of Knowledge. Bulletin of the American Meteorological Society, 2013, 94, 821-834.	1.7	365
6	Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Advances in Water Resources, 2009, 32, 1255-1266.	1.7	359
7	Rainfall and sampling uncertainties: A rain gauge perspective. Journal of Geophysical Research, 2008, 113, .	3.3	356
8	On the Seasonal Forecasting of Regional Tropical Cyclone Activity. Journal of Climate, 2014, 27, 7994-8016.	1.2	340
9	Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall. Surveys in Geophysics, 2010, 31, 107-129.	2.1	339
10	Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios. Journal of Climate, 2013, 26, 6591-6617.	1.2	316
11	Winter floods in Britain are connected to atmospheric rivers. Geophysical Research Letters, 2011, 38, n/a.	1.5	291
12	Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2021, 2, 107-122.	12.2	279
13	The nexus between atmospheric rivers and extreme precipitation across Europe. Geophysical Research Letters, 2013, 40, 3259-3264.	1.5	274
14	The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large $\hat{a}\in$ scale climatic circulation. Journal of Geophysical Research, 2012, 117, .	3.3	245
15	Flood peak distributions for the eastern United States. Water Resources Research, 2010, 46, .	1.7	218
16	Product-Error-Driven Uncertainty Model for Probabilistic Quantitative Precipitation Estimation with NEXRAD Data. Journal of Hydrometeorology, 2007, 8, 1325-1347.	0.7	205
17	On the frequency of heavy rainfall for the Midwest of the United States. Journal of Hydrology, 2011, 400, 103-120.	2.3	197
18	The contribution of atmospheric rivers to precipitation in Europe and the United States. Journal of Hydrology, 2015, 522, 382-390.	2.3	177

#	Article	IF	CITATIONS
19	Responses and impacts of atmospheric rivers to climate change. Nature Reviews Earth & Environment, 2020, 1, 143-157.	12.2	171
20	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 997-1017.	1.7	158
21	Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environmental Research Letters, 2013, 8, 034010.	2.2	155
22	RADAR-Rainfall Uncertainties. Bulletin of the American Meteorological Society, 2010, 91, 87-94.	1.7	153
23	Contribution of Tropical Cyclones to Rainfall at the Global Scale. Journal of Climate, 2017, 30, 359-372.	1.2	153
24	Projected Increases in North Atlantic Tropical Cyclone Intensity from CMIP5 Models. Journal of Climate, 2013, 26, 3231-3240.	1.2	150
25	Nonstationary modeling of a long record of rainfall and temperature over Rome. Advances in Water Resources, 2010, 33, 1256-1267.	1.7	143
26	On the seasonality of flooding across the continental United States. Advances in Water Resources, 2016, 87, 80-91.	1.7	142
27	Changing Frequency of Heavy Rainfall over the Central United States. Journal of Climate, 2013, 26, 351-357.	1.2	139
28	Mixture Distributions and the Hydroclimatology of Extreme Rainfall and Flooding in the Eastern United States. Journal of Hydrometeorology, 2011, 12, 294-309.	0.7	133
29	Recent trends in U.S. flood risk. Geophysical Research Letters, 2016, 43, 12,428.	1.5	132
30	Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nature Climate Change, 2012, 2, 604-607.	8.1	129
31	Statistical–Dynamical Predictions of Seasonal North Atlantic Hurricane Activity. Monthly Weather Review, 2011, 139, 1070-1082.	0.5	128
32	Atmospheric Rivers and Flooding over the Central United States. Journal of Climate, 2013, 26, 7829-7836.	1.2	123
33	The Pacific Meridional Mode and the Occurrence of Tropical Cyclones in the Western North Pacific. Journal of Climate, 2016, 29, 381-398.	1.2	122
34	Analyses of seasonal and annual maximum daily discharge records for central Europe. Journal of Hydrology, 2011, 399, 299-312.	2.3	120
35	Examining Flood Frequency Distributions in the Midwest U.S.1. Journal of the American Water Resources Association, 2011, 47, 447-463.	1.0	118
36	Tropical cyclone sensitivities to CO2 doubling: roles of atmospheric resolution, synoptic variability and background climate changes. Climate Dynamics, 2019, 53, 5999-6033.	1.7	114

#	Article	IF	CITATIONS
37	A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrological Sciences Journal, 2016, 61, 245-254.	1.2	113
38	North Atlantic Tropical Cyclones and U.S. Flooding. Bulletin of the American Meteorological Society, 2014, 95, 1381-1388.	1.7	107
39	Modeling the Dependence of Tropical Storm Counts in the North Atlantic Basin on Climate Indices. Monthly Weather Review, 2010, 138, 2681-2705.	0.5	100
40	Sensitivity of Tropical Cyclone Rainfall to Idealized Global-Scale Forcings*. Journal of Climate, 2014, 27, 4622-4641.	1.2	98
41	Mixed populations and annual flood frequency estimates in the western United States: The role of atmospheric rivers. Water Resources Research, 2017, 53, 257-269.	1.7	98
42	Joint projections of US East Coast sea level and storm surge. Nature Climate Change, 2015, 5, 1114-1120.	8.1	97
43	Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	93
44	Investigating the relationship between the frequency of flooding over the central United States and large-scale climate. Advances in Water Resources, 2016, 92, 159-171.	1.7	90
45	Analyses of extreme flooding in Austria over the period 1951–2006. International Journal of Climatology, 2012, 32, 1178-1192.	1.5	86
46	Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges. Advances in Water Resources, 2008, 31, 1015-1023.	1.7	85
47	Modeling Extreme Rainfall, Winds, and Surge from Hurricane Isabel (2003). Weather and Forecasting, 2010, 25, 1342-1361.	0.5	85
48	Extreme Flood Response: The June 2008 Flooding in Iowa. Journal of Hydrometeorology, 2013, 14, 1810-1825.	0.7	82
49	Evaluation of the research version TMPA three-hourly 0.25° × 0.25° rainfall estimates over Oklahoma. Geophysical Research Letters, 2007, 34, .	1.5	81
50	Intense Precipitation Events Associated with Landfalling Tropical Cyclones in Response to a Warmer Climate and Increased CO2. Journal of Climate, 2014, 27, 4642-4654.	1.2	81
51	Urbanization and Climate Change: An Examination of Nonstationarities in Urban Flooding. Journal of Hydrometeorology, 2013, 14, 1791-1809.	0.7	79
52	Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA. Theoretical and Applied Climatology, 2017, 130, 345-363.	1.3	79
53	Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition. Journal of Hydrology, 2013, 488, 150-165.	2.3	78
54	Modeling radar-rainfall estimation uncertainties using parametric and non-parametric approaches. Advances in Water Resources, 2008, 31, 1674-1686.	1.7	77

#	Article	IF	CITATIONS
55	Dominant Role of Atlantic Multidecadal Oscillation in the Recent Decadal Changes in Western North Pacific Tropical Cyclone Activity. Geophysical Research Letters, 2018, 45, 354-362.	1.5	75
56	Development of a High-Resolution Gridded Daily Meteorological Dataset over Sub-Saharan Africa: Spatial Analysis of Trends in Climate Extremes. Journal of Climate, 2014, 27, 5815-5835.	1.2	73
57	Analyses of a longâ€ŧerm, highâ€ŧesolution radar rainfall data set for the Baltimore metropolitan region. Water Resources Research, 2012, 48, .	1.7	69
58	Spectrum of storm event hydrologic response in urban watersheds. Water Resources Research, 2013, 49, 2649-2663.	1.7	69
59	Improved Simulation of Tropical Cyclone Responses to ENSO in the Western North Pacific in the High-Resolution GFDL HiFLOR Coupled Climate Model*. Journal of Climate, 2016, 29, 1391-1415.	1.2	69
60	Productâ€errorâ€driven generator of probable rainfall conditioned on WSRâ€88D precipitation estimates. Water Resources Research, 2009, 45, .	1.7	66
61	Global Changes in 20‥ear, 50‥ear, and 100‥ear River Floods. Geophysical Research Letters, 2021, 48, e2020GL091824.	1.5	66
62	Radar analyses of extreme rainfall and flooding in urban drainage basins. Journal of Hydrology, 2010, 381, 266-286.	2.3	65
63	Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4576-4581.	3.3	64
64	Seasonal Forecasts of Major Hurricanes and Landfalling Tropical Cyclones using a High-Resolution GFDL Coupled Climate Model. Journal of Climate, 2016, 29, 7977-7989.	1.2	64
65	Detecting inhomogeneities in the Twentieth Century Reanalysis over the central United States. Journal of Geophysical Research, 2012, 117, .	3.3	60
66	Expansion and Contraction of the Indo-Pacific Tropical Rain Belt over the Last Three Millennia. Scientific Reports, 2016, 6, 34485.	1.6	60
67	New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3â€hourly estimates over Oklahoma. Journal of Geophysical Research, 2009, 114,	3.3	59
68	On the temporal clustering of US floods and its relationship to climate teleconnection patterns. International Journal of Climatology, 2013, 33, 629-640.	1.5	59
69	On the skill of numerical weather prediction models to forecast atmospheric rivers over the central United States. Geophysical Research Letters, 2014, 41, 4354-4362.	1.5	58
70	Multiyear Predictions of North Atlantic Hurricane Frequency: Promise and Limitations. Journal of Climate, 2013, 26, 5337-5357.	1.2	57
71	Assessing Current and Future Freshwater Flood Risk from North Atlantic Tropical Cyclones via Insurance Claims. Scientific Reports, 2017, 7, 41609.	1.6	56
72	Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190542.	1.6	56

#	Article	IF	CITATIONS
73	Estimation of radar-rainfall error spatial correlation. Advances in Water Resources, 2009, 32, 1020-1030.	1.7	55
74	Towards probabilistic forecasting of flash floods: The combined effects of uncertainty in radar-rainfall and flash flood guidance. Journal of Hydrology, 2010, 394, 275-284.	2.3	55
75	Statistical–Dynamical Seasonal Forecast of North Atlantic and U.S. Landfalling Tropical Cyclones Using the High-Resolution GFDL FLOR Coupled Model. Monthly Weather Review, 2016, 144, 2101-2123.	0.5	55
76	Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation. Journal of Hydrology, 2018, 559, 698-710.	2.3	54
77	Hydroclimatology of flash flooding in Atlanta. Water Resources Research, 2012, 48, .	1.7	53
78	A longâ€ŧerm perspective of the hydroclimatological impacts of atmospheric rivers over the central United States. Water Resources Research, 2017, 53, 1144-1166.	1.7	53
79	Is the recorded increase in short-duration North Atlantic tropical storms spurious?. Journal of Geophysical Research, 2011, 116, .	3.3	51
80	North Atlantic Tropical Storm Frequency Response to Anthropogenic Forcing: Projections and Sources of Uncertainty. Journal of Climate, 2011, 24, 3224-3238.	1.2	51
81	Contribution of tropical cyclones to extreme rainfall in Australia. International Journal of Climatology, 2016, 36, 1019-1025.	1.5	51
82	The added value of IMERG in characterizing rainfall in tropical cyclones. Atmospheric Research, 2018, 209, 95-102.	1.8	51
83	North Atlantic Power Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE): Statistical Modeling and Sensitivity to Sea Surface Temperature Changes. Journal of Climate, 2012, 25, 625-637.	1.2	50
84	Roles of climate and agricultural practices in discharge changes in an agricultural watershed in Iowa. Agriculture, Ecosystems and Environment, 2014, 188, 204-211.	2.5	50
85	Evaluation of the skill of North-American Multi-Model Ensemble (NMME) Global Climate Models in predicting average and extreme precipitation and temperature over the continental USA. Climate Dynamics, 2019, 53, 7381-7396.	1.7	50
86	Annual maximum and peaks-over-threshold analyses of daily rainfall accumulations for Austria. Journal of Geophysical Research, 2011, 116, .	3.3	49
87	Modulation of western North Pacific tropical cyclone activity by the Atlantic Meridional Mode. Climate Dynamics, 2017, 48, 631-647.	1.7	48
88	Changes in seasonal maximum daily precipitation in China over the period 1961–2006. International Journal of Climatology, 2013, 33, 1646-1657.	1.5	47
89	Spatial and temporal modeling of radar rainfall uncertainties. Atmospheric Research, 2014, 135-136, 91-101.	1.8	47
90	Enhancing the Predictability of Seasonal Streamflow With a Statisticalâ€Dynamical Approach. Geophysical Research Letters, 2018, 45, 6504-6513.	1.5	47

#	Article	IF	CITATIONS
91	Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures. Climatic Change, 2019, 154, 257-271.	1.7	47
92	U.S. Landfalling and North Atlantic Hurricanes: Statistical Modeling of Their Frequencies and Ratios. Monthly Weather Review, 2012, 140, 44-65.	0.5	46
93	Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones. Journal of Hydrology, 2018, 556, 1026-1037.	2.3	46
94	Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environmental Research Letters, 2013, 8, 044056.	2.2	45
95	Uncertainties in projected runoff over the conterminous United States. Climatic Change, 2018, 150, 149-162.	1.7	45
96	The Hydrology and Hydrometeorology of Flooding in the Delaware River Basin. Journal of Hydrometeorology, 2010, 11, 841-859.	0.7	44
97	Sensitivity Studies of the Models of Radar-Rainfall Uncertainties. Journal of Applied Meteorology and Climatology, 2010, 49, 288-309.	0.6	44
98	Statistical–Dynamical Seasonal Forecast of Western North Pacific and East Asia Landfalling Tropical Cyclones using the GFDL FLOR Coupled Climate Model. Journal of Climate, 2017, 30, 2209-2232.	1.2	44
99	Incorporating climate change in flood estimation guidance. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190548.	1.6	44
100	Observed changes in flood hazard in Africa. Environmental Research Letters, 2020, 15, 1040b5.	2.2	43
101	Statistical model of the range-dependent error in radar-rainfall estimates due to the vertical profile of reflectivity. Journal of Hydrology, 2011, 402, 306-316.	2.3	42
102	An evaluation of the statistical homogeneity of the Twentieth Century Reanalysis. Climate Dynamics, 2014, 42, 2841-2866.	1.7	42
103	Changes in Atlantic major hurricane frequency since the late-19th century. Nature Communications, 2021, 12, 4054.	5.8	42
104	Longâ€Term Highâ€Resolution Radar Rainfall Fields for Urban Hydrology. Journal of the American Water Resources Association, 2014, 50, 713-734.	1.0	40
105	Evaluating the Drivers of Seasonal Streamflow in the U.S. Midwest. Water (Switzerland), 2017, 9, 695.	1.2	40
106	On the statistical attribution of the frequency of flood events across the U.S. Midwest. Advances in Water Resources, 2019, 127, 225-236.	1.7	38
107	Deadly Compound Heat Stressâ€Flooding Hazard Across the Central United States. Geophysical Research Letters, 2020, 47, e2020GL089185.	1.5	38
108	Uncovering the role of the East Asian jet stream and heterogeneities in atmospheric rivers affecting the western United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 891-896.	3.3	36

#	Article	IF	CITATIONS
109	An Overview of Flood Concepts, Challenges, and Future Directions. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	0.8	36
110	Effects of Rainfall on Vehicle Crashes in Six U.S. States. Weather, Climate, and Society, 2017, 9, 53-70.	0.5	35
111	Metastatistical Extreme Value Distribution applied to floods across the continental United States. Advances in Water Resources, 2020, 136, 103498.	1.7	35
112	Projected Changes in Intense Precipitation over Europe at the Daily and Subdaily Time Scales*. Journal of Climate, 2015, 28, 6193-6203.	1.2	34
113	Empirically based modelling of radarâ€rainfall uncertainties for a Câ€band radar at different timeâ€scales. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1424-1438.	1.0	33
114	Accounting for Mixed Populations in Flood Frequency Analysis: Bulletin 17C Perspective. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	0.8	33
115	Extreme rainfall and flooding from orographic thunderstorms in the central Appalachians. Water Resources Research, 2011, 47, .	1.7	31
116	On the relationship between atmospheric rivers and high sea water levels along the U.S. West Coast. Geophysical Research Letters, 2016, 43, 8815-8822.	1.5	31
117	Heavy precipitation is highly sensitive to the magnitude of future warming. Climatic Change, 2017, 145, 249-257.	1.7	31
118	Humans, climate and streamflow. Nature Climate Change, 2021, 11, 725-726.	8.1	31
119	Next Season's Hurricanes. Science, 2014, 343, 618-619.	6.0	30
120	Weighting of NMME temperature and precipitation forecasts across Europe. Journal of Hydrology, 2017, 552, 646-659.	2.3	30
121	Influences of Natural Variability and Anthropogenic Forcing on the Extreme 2015 Accumulated Cyclone Energy in the Western North Pacific. Bulletin of the American Meteorological Society, 2016, 97, S131-S135.	1.7	29
122	Analyses Through the Metastatistical Extreme Value Distribution Identify Contributions of Tropical Cyclones to Rainfall Extremes in the Eastern United States. Geophysical Research Letters, 2020, 47, e2020GL087238.	1.5	29
123	Northward Propagation of the Intertropical Convergence Zone and Strengthening of Indian Summer Monsoon Rainfall. Geophysical Research Letters, 2020, 47, e2020GL089823.	1.5	28
124	Development of statistical models for atâ€site probabilistic seasonal rainfall forecast. International Journal of Climatology, 2012, 32, 2197-2212.	1.5	27
125	Multiseason Lead Forecast of the North Atlantic Power Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE). Journal of Climate, 2013, 26, 3631-3643.	1.2	27
126	On the weather types that shape the precipitation patterns across the U.S. Midwest. Climate Dynamics, 2019, 53, 4217-4232.	1.7	27

#	Article	IF	CITATIONS
127	Changes in monthly baseflow across the U.S. Midwest. Hydrological Processes, 2019, 33, 748-758.	1.1	27
128	Evaluation of the Drivers Responsible for Flooding in Africa. Water Resources Research, 2021, 57, e2021WR029595.	1.7	27
129	Effect of radarâ€rainfall uncertainties on the spatial characterization of rainfall events. Journal of Geophysical Research, 2010, 115, .	3.3	26
130	A dynamical statistical framework for seasonal streamflow forecasting in an agricultural watershed. Climate Dynamics, 2019, 53, 7429-7445.	1.7	26
131	Projections of heavy rainfall over the central United States based on <scp>CMIP5</scp> models. Atmospheric Science Letters, 2013, 14, 200-205.	0.8	25
132	Housing Market Fluctuations and the Implicit Price of Water Quality: Empirical Evidence from a South Florida Housing Market. Environmental and Resource Economics, 2017, 68, 319-341.	1.5	25
133	Analyses of annual and seasonal maximum daily rainfall accumulations for Ukraine, Moldova, and Romania. International Journal of Climatology, 2012, 32, 2213-2226.	1.5	24
134	Atmospheric Rivers and Rainfall during NASA's Iowa Flood Studies (IFloodS) Campaign*. Journal of Hydrometeorology, 2016, 17, 257-271.	0.7	24
135	Rainfall from tropical cyclones: high-resolution simulations and seasonal forecasts. Climate Dynamics, 2019, 52, 5269-5289.	1.7	24
136	Early prediction of the Indian summer monsoon rainfall by the Atlantic Meridional Mode. Climate Dynamics, 2020, 54, 2337-2346.	1.7	24
137	Examining the precipitation associated with medicanes in the <scp>highâ€resolution ERA</scp> â€5 reanalysis data. International Journal of Climatology, 2021, 41, E126.	1.5	24
138	Spatial and temporal variability of cloud-to-ground lightning over the continental U.S. during the period 1995–2010. Atmospheric Research, 2013, 124, 137-148.	1.8	23
139	On the impact of gaps on trend detection in extreme streamflow time series. International Journal of Climatology, 2017, 37, 3976-3983.	1.5	23
140	Tropical cyclone precipitation in the HighResMIP atmosphere-only experiments of the PRIMAVERA Project. Climate Dynamics, 2021, 57, 253-273.	1.7	23
141	Projected changes in extreme precipitation at sub-daily and daily time scales. Global and Planetary Change, 2019, 182, 103004.	1.6	22
142	Benthic control upon the morphology of transported fine sediments in a lowâ€gradient stream. Hydrological Processes, 2014, 28, 3776-3788.	1.1	21
143	Impacts of the Pacific Meridional Mode on June–August precipitation in the Amazon River Basin. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1936-1945.	1.0	21
144	Statistically-based projected changes in the frequency of flood events across the U.S. Midwest. Journal of Hydrology, 2020, 584, 124314.	2.3	21

#	Article	IF	CITATIONS
145	Were global numerical weather prediction systems capable of forecasting the extreme Colorado rainfall of 9–16 September 2013?. Geophysical Research Letters, 2013, 40, 6405-6410.	1.5	20
146	Statisticalâ€dynamical seasonal forecast of western North Pacific and East Asia landfalling tropical cyclones using the highâ€resolution GFDL FLOR coupled model. Journal of Advances in Modeling Earth Systems, 2016, 8, 538-565.	1.3	20
147	Improved ENSO Forecasting Using Bayesian Updating and the North American Multimodel Ensemble (NMME). Journal of Climate, 2017, 30, 9007-9025.	1.2	20
148	Hydrologic Analyses of the July 17–18, 1996, Flood in Chicago and the Role of Urbanization. Journal of Hydrologic Engineering - ASCE, 2013, 18, 250-259.	0.8	19
149	Stronger influences of increased CO ₂ on subdaily precipitation extremes than at the daily scale. Geophysical Research Letters, 2017, 44, 7464-7471.	1.5	19
150	Flooding associated with predecessor rain events over the Midwest United States. Environmental Research Letters, 2013, 8, 024007.	2.2	18
151	On the use of Cox regression to examine the temporal clustering of flooding and heavy precipitation across the central United States. Clobal and Planetary Change, 2017, 155, 98-108.	1.6	18
152	High resolution decadal precipitation predictions over the continental United States for impacts assessment. Journal of Hydrology, 2017, 553, 559-573.	2.3	18
153	Examining the capability of reanalyses in capturing the temporal clustering of heavy precipitation across Europe. Climate Dynamics, 2019, 53, 1845-1857.	1.7	18
154	Lagrangian Analyses of Rainfall Structure and Evolution for Organized Thunderstorm Systems in the Urban Corridor of the Northeastern United States. Journal of Hydrometeorology, 2015, 16, 1575-1595.	0.7	17
155	Multi-model ensemble forecasting of North Atlantic tropical cyclone activity. Climate Dynamics, 2019, 53, 7461-7477.	1.7	17
156	Evaluation of the Research-Version TMPA Rainfall Estimate at Its Finest Spatial and Temporal Scales over the Rome Metropolitan Area. Journal of Applied Meteorology and Climatology, 2010, 49, 2591-2602.	0.6	16
157	Projected Changes in Discharge in an Agricultural Watershed in Iowa. Journal of the American Water Resources Association, 2015, 51, 1361-1371.	1.0	16
158	Remote sensing-based characterization of rainfall during atmospheric rivers over the central United States. Journal of Hydrology, 2018, 556, 1038-1049.	2.3	16
159	On the statistical attribution of changes in monthly baseflow across the U.S. Midwest. Journal of Hydrology, 2021, 592, 125551.	2.3	16
160	Climate More Important for Chinese Flood Changes Than Reservoirs and Land Use. Geophysical Research Letters, 2021, 48, e2021GL093061.	1.5	16
161	Soybean Area and Baseflow Driving Nitrate in Iowa's Raccoon River. Journal of Environmental Quality, 2016, 45, 1949-1959.	1.0	15
162	An investigation of predictability dynamics of temperature and precipitation in reanalysis datasets over the continental United States. Atmospheric Research, 2017, 183, 341-350.	1.8	15

#	Article	IF	CITATIONS
163	Attribution of the impacts of the 2008 flooding in Cedar Rapids (Iowa) to anthropogenic forcing. Environmental Research Letters, 2020, 15, 114057.	2.2	14
164	The relationship between daily European precipitation and measures of atmospheric water vapour transport. International Journal of Climatology, 2015, 35, 2187-2192.	1.5	13
165	Effects of methodological decisions on rainfall-related crash relative risk estimates. Accident Analysis and Prevention, 2019, 130, 22-29.	3.0	13
166	Contribution of eastern North Pacific tropical cyclones and their remnants on flooding in the western United States. International Journal of Climatology, 2018, 38, 5441-5446.	1.5	12
167	On the decadal predictability of the frequency of flood events across the U.S. Midwest. International Journal of Climatology, 2019, 39, 1796-1804.	1.5	12
168	Impact of different regression frameworks on the estimation of the scaling properties of radar rainfall. Atmospheric Research, 2007, 86, 340-349.	1.8	11
169	Inference of Spatial Scaling Properties of Rainfall: Impact of Radar Rainfall Estimation Uncertainties. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 812-815.	1.4	11
170	Flooding in Texas: Examination of Temporal Changes and Impacts of Tropical Cyclones. Journal of the American Water Resources Association, 2013, 49, 825-837.	1.0	11
171	Characterization of the diurnal cycle of maximum rainfall in tropical cyclones. Journal of Hydrology, 2018, 564, 997-1007.	2.3	11
172	Flash Flooding in the Philadelphia Metropolitan Region. Journal of Hydrologic Engineering - ASCE, 2010, 15, 29-38.	0.8	10
173	Analyses of the warm season rainfall climatology of the northeastern US using regional climate model simulations and radar rainfall fields. Advances in Water Resources, 2011, 34, 184-204.	1.7	10
174	Evaluation of global impact models' ability to reproduce runoff characteristics over the central United States. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9138-9159.	1.2	10
175	Seasonal forecasting of western North Pacific tropical cyclone frequency using the North American multi-model ensemble. Climate Dynamics, 2019, 52, 5985-5997.	1.7	10
176	Projected changes in flooding: a continental U.S. perspective. Annals of the New York Academy of Sciences, 2020, 1472, 95-103.	1.8	10
177	Riverine Flooding and Landfalling Tropical Cyclones Over China. Earth's Future, 2020, 8, no.	2.4	10
178	On the use of convolutional Gaussian processes to improve the seasonal forecasting of precipitation and temperature. Journal of Hydrology, 2021, 593, 125862.	2.3	10
179	Greenhouse gases drove the increasing trends in spring precipitation across the central USA. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190553.	1.6	10
180	Heavy Precipitation Impacts on Nitrogen Loading to the Gulf of Mexico in the 21st Century: Model Projections Under Future Climate Scenarios. Earth's Future, 2022, 10, .	2.4	10

#	Article	IF	CITATIONS
181	Evaluation of the capability of the Lombard test in detecting abrupt changes in variance. Journal of Hydrology, 2016, 534, 451-465.	2.3	9
182	On the role of the Atlantic Ocean in forcing tropic cyclones in the Arabian Sea. Atmospheric Research, 2019, 220, 120-124.	1.8	9
183	The Role of Climate in Monthly Baseflow Changes across the Continental United States. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	0.8	9
184	Decadal temperature predictions over the continental United States: Analysis and Enhancement. Climate Dynamics, 2017, 49, 3587-3604.	1.7	8
185	On the impacts of computing daily temperatures as the average of the daily minimum and maximum temperatures. Atmospheric Research, 2017, 198, 145-150.	1.8	8
186	Examination of Changes in Annual Maximum Gauge Height in the Continental United States Using Quantile Regression. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	0.8	8
187	Impacts of the Pacific Meridional Mode on Landfalling North Atlantic tropical cyclones. Climate Dynamics, 2018, 50, 991-1006.	1.7	8
188	Modeling the seasonality of extreme coastal water levels with mixtures of circular probability density functions. Theoretical and Applied Climatology, 2020, 140, 1199-1206.	1.3	8
189	Hydro-NEXRAD Radar-Rainfall Estimation Algorithm Development, Testing and Evaluation. , 2007, , .		8
190	Attribution of annual maximum sea levels to tropical cyclones at the global scale. International Journal of Climatology, 2017, 37, 540-547.	1.5	7
191	Tropical Cyclone Rainfall Changes in a Warmer Climate. , 2017, , 243-255.		7
192	Hydrometeorological analysis of the December 2008 flood in Rome. Hydrological Sciences Journal, 2011, 56, 1150-1165.	1.2	6
193	Seasonal predictability of high sea level frequency using ENSO patterns along the U.S. West Coast. Advances in Water Resources, 2019, 131, 103377.	1.7	6
194	Impacts of the Pacific meridional mode on rainfall over the maritime continent and australia: potential for seasonal predictions. Climate Dynamics, 2019, 53, 7185-7199.	1.7	6
195	On the role of the atlantic ocean in exacerbating indian heat waves. Climate Dynamics, 2020, 54, 1887-1896.	1.7	6
196	The Pacific Decadal Oscillation Modulates Tropical Cyclone Days on the Interannual Timescale in the North Pacific Ocean. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034988.	1.2	6
197	Probabilistic rainfall generator for tropical cyclones affecting Louisiana. International Journal of Climatology, 2022, 42, 1789-1802.	1.5	6
198	Effects of Systematic and Random Errors on the Spatial Scaling Properties in Radar-Estimated Rainfall. , 2007, , 37-51.		6

12

#	Article	IF	CITATIONS
199	Application of GIS for processing and establishing the correlation between weather radar reflectivity and precipitation data. Meteorological Applications, 2005, 12, 91-99.	0.9	5
200	On the unseasonal flooding over the Central United States during December 2015 and January 2016. Atmospheric Research, 2017, 196, 23-28.	1.8	5
201	Evaluation of the capability of global climate models in reproducing the temporal clustering in heavy precipitation over Europe. International Journal of Climatology, 2021, 41, 131-145.	1.5	5
202	Flood response for the watersheds of the <scp>F</scp> ernow <scp>E</scp> xperimental <scp>F</scp> orest in the central <scp>A</scp> ppalachians. Water Resources Research, 2015, 51, 4431-4453.	1.7	4
203	Intraseasonal predictability of the duration of flooding above National Weather Service flood warning levels across the U.S. Midwest. Hydrological Processes, 2020, 34, 4505-4511.	1.1	4
204	Development of statistical models for estimating daily nitrate load in Iowa. Science of the Total Environment, 2021, 782, 146643.	3.9	4
205	Potential Impacts of Anthropogenic Forcing on the Frequency of Tropical Depressions in the North Indian Ocean in 2018. Journal of Marine Science and Engineering, 2019, 7, 436.	1.2	4
206	Evaluation of the Analysis of Record for Calibration (AORC) Rainfall across Louisiana. Remote Sensing, 2022, 14, 3284.	1.8	4
207	Simulated Connections between ENSO and Tropical Cyclones near Guam in a High-Resolution GFDL Coupled Climate Model: Implications for Seasonal Forecasting. Journal of Climate, 2016, 29, 8231-8248.	1.2	3
208	El Niño–Southern Oscillation–like variability in a late Miocene Caribbean coral. Geology, 2017, 45, 643-646.	2.0	3
209	On the inherent predictability of precipitation across the United States. Theoretical and Applied Climatology, 2018, 133, 1035-1050.	1.3	3
210	The East Asian Subtropical Jet Stream and Atlantic Tropical Cyclones. Geophysical Research Letters, 2020, 47, e2020GL088851.	1.5	3
211	Projected changes in monthly baseflow across the U.S. Midwest. International Journal of Climatology, 2021, 41, 5536.	1.5	3
212	Applications of Radar-Based Rainfall Estimates to Urban Flood Studies. Journal of Water Management Modeling, 2013, , .	0.0	3
213	Evaluation of the capability of regional climate models in reproducing the temporal clustering in heavy precipitation over Europe. Atmospheric Research, 2022, 269, 106027.	1.8	3
214	On the role of atmospheric simulations horizontal grid spacing for flood modeling. Climate Dynamics, 2022, 59, 3167-3174.	1.7	3
215	Reply to Comments on "Multiyear Predictions of North Atlantic Hurricane Frequency: Promise and Limitations― Journal of Climate, 2014, 27, 490-492.	1.2	2
216	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 1440.	1.7	2

#	Article	IF	CITATIONS
217	Assessing the relation of USDA conservation expenditures to suspended sediment reductions in an lowa watershed. Journal of Environmental Management, 2016, 180, 375-383.	3.8	2
218	Multiple Radar Data Merging in Hydro-NEXRAD. , 2008, , .		2
219	Bayesian Hierarchical Models for the Frequency of Winter Heavy Precipitation Events Over the Central United States: The Role of Atmospheric Rivers. Water Resources Research, 2020, 56, e2020WR028256.	1.7	1
220	On the role of increased CO2 concentrations in enhancing the temporal clustering of heavy precipitation events across Europe. Climatic Change, 2020, 162, 1455-1472.	1.7	1
221	Fidelity of global climate models in representing the horizontal water vapour transport. International Journal of Climatology, 2020, 40, 5714-5726.	1.5	1
222	Hydrological response in a highly urbanized watershed in China. Journal of Water and Climate Change, 0, , .	1.2	1
223	Evaluation of the Research-Version TMPA Rainfall Estimate at Its Finest Spatial and Temporal Scales over the Rome Metropolitan Area. Journal of Applied Meteorology and Climatology, 2010, 49, 2591-2602.	0.6	1
224	Bayesian negative binomial regression model with unobserved covariates for predicting the frequency of north atlantic tropical storms. Journal of Applied Statistics, 2023, 50, 2014-2035.	0.6	1
225	A Comparison of Bayesian Multivariate Versus Univariate Normal Regression Models for Prediction. American Statistician, 2023, 77, 304-312.	0.9	1
226	Correlation between weather radar reflectivity and precipitation data obtained from free Internet resources. , 2004, , .		0
227	Reply to Nott: Assessing biases in speleothem records of flood events. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4637-E4637.	3.3	0
228	Reduced extremes of subâ€daily temperature swings during the boreal summer in the Northern Hemisphere. International Journal of Climatology, 2020, 40, 1306-1315.	1.5	0