Di Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2186628/publications.pdf

Version: 2024-02-01

759233 752698 20 544 12 20 citations h-index g-index papers 23 23 23 543 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Enhancing Extracellular Electron Transfer of <i>Shewanella oneidensis</i> MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation. Environmental Science & Echnology, 2017, 51, 5082-5089.	10.0	141
2	Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila. Environment International, 2019, 129, 86-94.	10.0	81
3	Promoting bidirectional extracellular electron transfer of <i>Shewanella oneidensis</i> MRâ€1 for hexavalent chromium reduction via elevating intracellular cAMP level. Biotechnology and Bioengineering, 2020, 117, 1294-1303.	3.3	48
4	Rediverting Electron Flux with an Engineered CRISPR-ddAsCpf1 System to Enhance the Pollutant Degradation Capacity of <i>Shewanella oneidensis</i> Environmental Science & Degradation Capacity of <i>Shewanella oneidensis</i>	10.0	38
5	Anaerobic reduction of 2,6â€dinitrotoluene by <i>Shewanella oneidensis</i> MRâ€1: Roles of Mtr respiratory pathway and NfnB. Biotechnology and Bioengineering, 2017, 114, 761-768.	3.3	35
6	Developing a baseâ€editing system to expand the carbon source utilization spectra of <i>Shewanella oneidensis</i> MRâ€l for enhanced pollutant degradation. Biotechnology and Bioengineering, 2020, 117, 2389-2400.	3.3	29
7	Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1. Chemosphere, 2018, 211, 345-351.	8.2	24
8	Zero-valent iron nanoparticles with sustained high reductive activity for carbon tetrachloride dechlorination. RSC Advances, 2015, 5, 54497-54504.	3.6	21
9	CRISPRi System as an Efficient, Simple Platform for Rapid Identification of Genes Involved in Pollutant Transformation by <i>Aeromonas hydrophila</i> Senvironmental Science & Camp; Technology, 2020, 54, 3306-3315.	10.0	21
10	Dependence of arsenic resistance and reduction capacity of Aeromonas hydrophila on carbon substrate. Journal of Hazardous Materials, 2021, 403, 123611.	12.4	19
11	Engineering a Rhamnose-Inducible System to Enhance the Extracellular Electron Transfer Ability of <i>Shewanella</i> Genus for Improved Cr(VI) Reduction. ACS ES&T Engineering, 2021, 1, 842-850.	7.6	14
12	Ligand-Assisted Formation of Soluble Mn(III) and Bixbyite-like Mn ₂ O ₃ by <i>Shewanella putrefaciens</i> CN32. Environmental Science & Environmental Scien	10.0	13
13	Repurposing CRISPR RNA-guided integrases system for one-step, efficient genomic integration of ultra-long DNA sequences. Nucleic Acids Research, 2022, 50, 7739-7750.	14.5	13
14	Sensing and Approaching Toxic Arsenate by <i>Shewanella putrefaciens</i> CN-32. Environmental Science & Environmental Science	10.0	12
15	Controlling pathogenic risks of water treatment biotechnologies at the source by genetic editing means. Environmental Microbiology, 2021, 23, 7578-7590.	3.8	9
16	Extracellular electron transfer via multiple electron shuttles in waterborne <i>Aeromonas hydrophila</i> for bioreduction of pollutants. Biotechnology and Bioengineering, 2021, 118, 4760-4770.	3.3	7
17	Electron transfer via the non-Mtr respiratory pathway from Shewanella putrefaciens CN-32 for methyl orange bioreduction. Process Biochemistry, 2020, 95, 108-114.	3.7	6
18	Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements. Biosensors and Bioelectronics, 2020, 156, 112136.	10.1	6

#	Article	IF	CITATION
19	Solar-Driven Synchronous Photoelectrochemical Sulfur Recovery and Pollutant Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 9591-9595.	6.7	5
20	Anaerobic Respiration on Nitarsone in Aquatic Environments by Shewanella oneidensis MR-1 Lacking Known C·As lyases. ACS ES&T Water, 2021, 1, 603-612.	4.6	2