Edgar O'Rear

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2186466/publications.pdf

Version: 2024-02-01

1163117 996975 21 239 8 15 citations h-index g-index papers 21 21 21 309 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sublethal Damage to Erythrocytes during Blood Flow. Fluids, 2022, 7, 66.	1.7	O
2	Production of erythrocyte microparticles in a sub-hemolytic environment. Journal of Artificial Organs, 2021, 24, 135-145.	0.9	9
3	Effect of Morphologically Controlled Hematite Nanoparticles on the Properties of Fly Ash Blended Cement. Nanomaterials, 2021, 11, 1003.	4.1	1
4	Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1709-1722.	2.8	4
5	Elongational Stresses and Cells. Cells, 2021, 10, 2352.	4.1	9
6	Rheology of Virgin Asphalt Binder Combined with High Percentages of RAP Binder Rejuvenated with Waste Vegetable Oil. ACS Omega, 2020, 5, 15791-15798.	3.5	15
7	The Applicability of a Drop Penetration Method to Measure Contact Angles on TiO2 and ZnO Nanoparticles. Nanomaterials, 2020, 10, 1099.	4.1	7
8	A Flow Induced Autoimmune Response and Accelerated Senescence of Red Blood Cells in Cardiovascular Devices. Scientific Reports, 2019, 9, 19443.	3.3	16
9	Possible erythrocyte contributions to and exacerbation of the post-thrombolytic no-reflow phenomenon. Biorheology, 2018, 54, 81-93.	0.4	3
10	Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles. Materials Science and Engineering C, 2018, 93, 931-943.	7.3	51
11	Performance of glass woven fabric composites with admicellar-coated thin elastomeric interphase. Composite Interfaces, 2017, 24, 125-148.	2.3	6
12	Modified dextran, heparin-based triggered release microspheres for cardiovascular delivery of therapeutic drugs using protamine as a stimulus. Journal of Microencapsulation, 2017, 34, 299-307.	2.8	9
13	Reynolds Stresses and Hemolysis in Turbulent Flow Examined by Threshold Analysis. Fluids, 2016, 1, 42.	1.7	8
14	Heterogeneous phase fibrinolysis rates by damped oscillation rheometry. Biorheology, 2016, 53, 81-92.	0.4	0
15	An In Vitro Thrombolysis Study Using a Mixture of Fast-Acting and Slower Release Microspheres. Pharmaceutical Research, 2016, 33, 1552-1563.	3.5	2
16	Hemodynamics of the renal artery ostia with implications for their structural development and efficiency of flow. Biorheology, 2015, 52, 257-268.	0.4	1
17	Surfactant effects on application of a hydrophobic, fluoropolymer coating to cotton by admicellar polymerization. Fibers and Polymers, 2013, 14, 710-717.	2.1	7
18	Stain Resistance of Cotton Fabrics before and after Finishing with Admicellar Polymerization. Applied Sciences (Switzerland), 2012, 2, 192-205.	2.5	16

Edgar O'Rear

#	Article	IF	CITATIONS
19	Significance of Extensional Stresses to Red Blood Cell Lysis in a Shearing Flow. Annals of Biomedical Engineering, 2011, 39, 1632-1642.	2.5	40
20	A computational investigation of the geometric factors affecting the severity of renal arterial stenoses. Journal of Biorheology, 2009, 23, 102-110.	0.5	2
21	Self-extinguishing cotton fabric with minimal phosphorus deposition. Cellulose, 2008, 15, 731-737.	4.9	33