Sonia Troeira Henriques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2186292/publications.pdf

Version: 2024-02-01

85 papers 4,009 citations

38 h-index 60 g-index

90 all docs 90 docs citations

90 times ranked 4350 citing authors

#	Article	IF	Citations
1	Antimicrobial peptides provide wider coverage for targeting drugâ€resistant bacterial pathogens. Peptide Science, 2022, 114, e24246.	1.0	4
2	Modified horseshoe crab peptides target and kill bacteria inside host cells. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	11
3	Investigations into the membrane activity of arenicin antimicrobial peptide AA139. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130156.	1.1	4
4	Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183480.	1.4	16
5	Angler Peptides: Macrocyclic Conjugates Inhibit p53:MDM2/X Interactions and Activate Apoptosis in Cancer Cells. ACS Chemical Biology, 2021, 16, 414-428.	1.6	16
6	Designed Î ² -Hairpins Inhibit LDH5 Oligomerization and Enzymatic Activity. Journal of Medicinal Chemistry, 2021, 64, 3767-3779.	2.9	12
7	Converting peptides into drugs targeting intracellular protein–protein interactions. Drug Discovery Today, 2021, 26, 1521-1531.	3.2	53
8	Precision medicine by designer interference peptides: applications in oncology and molecular therapeutics. Oncogene, 2020, 39, 1167-1184.	2.6	61
9	Synthesis, Structure, and Activity of the Antifungal Plant Defensin <i>Pv</i> D ₁ . Journal of Medicinal Chemistry, 2020, 63, 9391-9402.	2.9	7
10	Antimicrobial Peptide Mimetics Based on a Diphenylacetylene Scaffold: Synthesis, Conformational Analysis, and Activity. ChemMedChem, 2020, 15, 1932-1939.	1.6	3
11	Cyclic peptide scaffold with ability to stabilize and deliver a helical cell-impermeable cargo across membranes of cultured cancer cells. RSC Chemical Biology, 2020, 1, 405-420.	2.0	12
12	Mode-of-Action of Antimicrobial Peptides: Membrane Disruption vs. Intracellular Mechanisms. Frontiers in Medical Technology, 2020, 2, 610997.	1.3	134
13	Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus. Journal of Biological Chemistry, 2020, 295, 10911-10925.	1.6	22
14	How to overcome endosomal entrapment of cellâ€penetrating peptides to release the therapeutic potential of peptides?. Peptide Science, 2020, 112, e24168.	1.0	17
15	Safer In Vitro Drug Screening Models for Melioidosis Therapy Development. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1846-1851.	0.6	5
16	Cell Membrane Composition Drives Selectivity and Toxicity of Designed Cyclic Helix–Loop–Helix Peptides with Cell Penetrating and Tumor Suppressor Properties. ACS Chemical Biology, 2019, 14, 2071-2087.	1.6	15
17	Computer-Aided Design of Mastoparan-like Peptides Enables the Generation of Nontoxic Variants with Extended Antibacterial Properties. Journal of Medicinal Chemistry, 2019, 62, 8140-8151.	2.9	19
18	Evaluation of Cyclic Peptide Inhibitors of the Grb7 Breast Cancer Target: Small Change in Cargo Results in Large Change in Cellular Activity. Molecules, 2019, 24, 3739.	1.7	7

#	Article	IF	Citations
19	Characterization of Tachyplesin Peptides and Their Cyclized Analogues to Improve Antimicrobial and Anticancer Properties. International Journal of Molecular Sciences, 2019, 20, 4184.	1.8	38
20	Cyclic Analogues of Horseshoe Crab Peptide Tachyplesin I with Anticancer and Cell Penetrating Properties. ACS Chemical Biology, 2019, 14, 2895-2908.	1.6	21
21	Is the Mirror Image a True Reflection? Intrinsic Membrane Chirality Modulates Peptide Binding. Journal of the American Chemical Society, 2019, 141, 20460-20469.	6.6	39
22	Peptide-Membrane Interactions Affect the Inhibitory Potency and Selectivity of Spider Toxins ProTx-II and GpTx-1. ACS Chemical Biology, 2019, 14, 118-130.	1.6	15
23	Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. Cell Chemical Biology, 2018, 25, 380-391.e5.	2.5	57
24	Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15–34), antimicrobial peptides from rattlesnake venom. Journal of Biological Chemistry, 2018, 293, 1536-1549.	1.6	83
25	Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. Journal of Biological Chemistry, 2018, 293, 9041-9052.	1.6	35
26	Defense Peptides Engineered from Human Platelet Factor 4 Kill Plasmodium by Selective Membrane Disruption. Cell Chemical Biology, 2018, 25, 1140-1150.e5.	2.5	13
27	PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cellular and Molecular Life Sciences, 2018, 75, 4511-4524.	2.4	34
28	Spider peptide toxin HwTx-IV engineered to bind to lipid membranes has an increased inhibitory potency at human voltage-gated sodium channel hNa V 1.7. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 835-844.	1.4	40
29	Cyclotide Structure and Function: The Role of Membrane Binding and Permeation. Biochemistry, 2017, 56, 669-682.	1.2	45
30	Orientation and Location of the Cyclotide Kalata B1 in Lipid Bilayers Revealed by Solid-State NMR. Biophysical Journal, 2017, 112, 630-642.	0.2	19
31	Gating modifier toxin interactions with ion channels and lipid bilayers: Is the trimolecular complex real?. Neuropharmacology, 2017, 127, 32-45.	2.0	17
32	Lysine to arginine mutagenesis of chlorotoxin enhances its cellular uptake. Biopolymers, 2017, 108, e23025.	1.2	12
33	Understanding the Diversity and Distribution of Cyclotides from Plants of Varied Genetic Origin. Journal of Natural Products, 2017, 80, 1522-1530.	1.5	25
34	Kalata B1 and Kalata B2 Have a Surfactant-Like Activity in Phosphatidylethanolomine-Containing Lipid Membranes. Langmuir, 2017, 33, 6630-6637.	1.6	32
35	Editorial Overview. Current Opinion in Chemical Biology, 2017, 38, iv-vi.	2.8	O
36	Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties. ACS Chemical Biology, 2017, 12, 2324-2334.	1.6	43

#	Article	IF	Citations
37	Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies. Biopolymers, 2017, 108, e22927.	1.2	11
38	Identification of survival-promoting OSIP108 peptide variants and their internalization in human cells. Mechanisms of Ageing and Development, 2017, 161, 247-254.	2.2	0
39	Lengths of the C-Terminus and Interconnecting Loops Impact Stability of Spider-Derived Gating Modifier Toxins. Toxins, 2017, 9, 248.	1.5	21
40	New Potent Membrane-Targeting Antibacterial Peptides from Viral Capsid Proteins. Frontiers in Microbiology, 2017, 8, 775.	1.5	37
41	Development of cellâ€penetrating peptideâ€based drug leads to inhibit MDMX:p53 and MDM2:p53 interactions. Biopolymers, 2016, 106, 853-863.	1.2	29
42	Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytologist, 2016, 210, 717-730.	3.5	58
43	Membrane-binding properties of gating modifier and pore-blocking toxins: Membrane interaction is not a prerequisite for modification of channel gating. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 872-882.	1.4	22
44	Mirror Images of Antimicrobial Peptides Provide Reflections on Their Functions and Amyloidogenic Properties. Journal of the American Chemical Society, 2016, 138, 5706-5713.	6.6	55
45	Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7. Journal of Biological Chemistry, 2016, 291, 17049-17065.	1.6	62
46	Development of a $\hat{l}\frac{1}{4}$ O-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8. Journal of Biological Chemistry, 2016, 291, 11829-11842.	1.6	37
47	Membrane-Binding Properties of Gating-Modifier and Pore Blocking Toxins: Membrane Interaction is not a Prerequisite for Modification of Channel Gating. Biophysical Journal, 2016, 110, 29a.	0.2	O
48	Using the MCoTI-II Cyclotide Scaffold To Design a Stable Cyclic Peptide Antagonist of SET, a Protein Overexpressed in Human Cancer. Biochemistry, 2016, 55, 396-405.	1.2	51
49	Structure-Activity Relationship Studies Reveal that the Spider Toxin Protx-II has Unusual Membrane-Binding Properties and Inhibits NAV1.7 Channel at the Membrane Surface. Biophysical Journal, 2016, 110, 76a.	0.2	1
50	Bacteria May Cope Differently from Similar Membrane Damage Caused by the Australian Tree Frog Antimicrobial Peptide Maculatin 1.1. Journal of Biological Chemistry, 2015, 290, 19853-19862.	1.6	51
51	Optimization of the cyclotide framework to improve cell penetration properties. Frontiers in Pharmacology, 2015, 6, 17.	1.6	31
52	Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from <i>Enterococcus faecium</i>). Biochemistry, 2015, 54, 4863-4876.	1.2	62
53	Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold. Scientific Reports, 2015, 5, 12974.	1.6	58
54	The Prototypic Cyclotide Kalata B1 Has a Unique Mechanism of Entering Cells. Chemistry and Biology, 2015, 22, 1087-1097.	6.2	71

#	Article	IF	CITATIONS
55	Lysine-rich Cyclotides: A New Subclass of Circular Knotted Proteins from Violaceae. ACS Chemical Biology, 2015, 10, 2491-2500.	1.6	34
56	Structural parameters modulating the cellular uptake of disulfide-rich cyclic cell-penetrating peptides: MCoTI-II and SFTI-1. European Journal of Medicinal Chemistry, 2014, 88, 10-18.	2.6	52
57	Anticancer and Toxic Properties of Cyclotides are Dependent on Phosphatidylethanolamine Phospholipid Targeting. ChemBioChem, 2014, 15, 1956-1965.	1.3	60
58	The Antimicrobial Activity of Sub3 is Dependent on Membrane Binding and Cellâ€Penetrating Ability. ChemBioChem, 2013, 14, 2013-2022.	1.3	55
59	The Cyclic Cystine Ladder in Î,-Defensins Is Important for Structure and Stability, but Not Antibacterial Activity. Journal of Biological Chemistry, 2013, 288, 10830-10840.	1.6	67
60	Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 944-955.	1.4	144
61	A Novel Quantitative Kinase Assay Using Bacterial Surface Display and Flow Cytometry. PLoS ONE, 2013, 8, e80474.	1.1	20
62	Phosphatidylethanolamine Binding Is a Conserved Feature of Cyclotide-Membrane Interactions. Journal of Biological Chemistry, 2012, 287, 33629-33643.	1.6	115
63	Importance of the Cell Membrane on the Mechanism of Action of Cyclotides. ACS Chemical Biology, 2012, 7, 626-636.	1.6	52
64	Cyclotide Isolation and Characterization. Methods in Enzymology, 2012, 516, 37-62.	0.4	19
65	The Application of Biophysical Techniques to Study Antimicrobial Peptides. Spectroscopy, 2012, 27, 541-549.	0.8	14
66	Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood, 2011, 118, 6709-6717.	0.6	197
67	NMR and protein structure in drug design: application to cyclotides and conotoxins. European Biophysics Journal, 2011, 40, 359-370.	1.2	30
68	A Synthetic Mirror Image of Kalata B1 Reveals that Cyclotide Activity Is Independent of a Protein Receptor. ChemBioChem, 2011, 12, 2456-2462.	1.3	49
69	Identification and Characterization of a New Family of Cell-penetrating Peptides. Journal of Biological Chemistry, 2011, 286, 36932-36943.	1.6	159
70	Decoding the Membrane Activity of the Cyclotide Kalata B1. Journal of Biological Chemistry, 2011, 286, 24231-24241.	1.6	155
71	Is PrP(106-126) Fragment Involved in the Membrane Activity of the Prion Protein?. Current Protein and Peptide Science, 2010, 11, 326-333.	0.7	3
72	Cyclotides as templates in drug design. Drug Discovery Today, 2010, 15, 57-64.	3.2	133

#	Article	IF	Citations
73	Structural and Functional Analysis of Human Liverâ€Expressed Antimicrobial Peptide 2. ChemBioChem, 2010, 11, 2148-2157.	1.3	48
74	Fast membrane association is a crucial factor in the peptide pep‹ translocation mechanism: A kinetic study followed by surface plasmon resonance. Biopolymers, 2010, 94, 314-322.	1.2	28
75	The Toxicity of Prion Protein Fragment PrP(106â~126) is Not Mediated by Membrane Permeabilization as Shown by a M112W Substitution. Biochemistry, 2009, 48, 4198-4208.	1.2	30
76	Translocation or membrane disintegration? Implication of peptide–membrane interactions in pepâ€1 activity. Journal of Peptide Science, 2008, 14, 482-487.	0.8	44
77	PrP(106-126) Does Not Interact with Membranes under Physiological Conditions. Biophysical Journal, 2008, 95, 1877-1889.	0.2	74
78	Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with pep-1. Molecular Membrane Biology, 2007, 24, 282-293.	2.0	49
79	How to address CPP and AMP translocation? Methods to detect and quantify peptide internalizationin vitroandin vivo(Review). Molecular Membrane Biology, 2007, 24, 173-184.	2.0	34
80	Cell-penetrating peptides and antimicrobial peptides: how different are they?. Biochemical Journal, 2006, 399, 1-7.	1.7	367
81	Translocation of β-Galactosidase Mediated by the Cell-Penetrating Peptide Pep-1 into Lipid Vesicles and Human HeLa Cells Is Driven by Membrane Electrostatic Potential. Biochemistry, 2005, 44, 10189-10198.	1.2	95
82	Environmental factors that enhance the action of the cell penetrating peptide pep-1. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1669, 75-86.	1.4	45
83	Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides. FEBS Letters, 2005, 579, 4498-4502.	1.3	40
84	Consequences of Nonlytic Membrane Perturbation to the Translocation of the Cell Penetrating Peptide Pep-1 in Lipidic Vesiclesâ€. Biochemistry, 2004, 43, 9716-9724.	1.2	86
85	Putative role of membranes in the HIV fusion inhibitor enfuvirtide mode of action at the molecular level. Biochemical Journal, 2004, 377, 107-110.	1.7	65