Sera Markoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2185873/publications.pdf

Version: 2024-02-01

171 19,371 62 137
papers citations h-index g-index

172 172 172 7798
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	3.0	2,264
2	LOFAR: The LOw-Frequency ARray. Astronomy and Astrophysics, 2013, 556, A2.	2.1	1,755
3	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	3.0	897
4	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	3.0	814
5	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	3.0	806
6	A scheme to unify low-power accreting black holes. Astronomy and Astrophysics, 2004, 414, 895-903.	2.1	631
7	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	3.0	618
8	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	3.0	568
9	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	3.0	519
10	Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae?. Astrophysical Journal, 2005, 635, 1203-1216.	1.6	459
11	A jet model for the broadband spectrum of XTE J1118+480. Astronomy and Astrophysics, 2001, 372, L25-L28.	2.1	412
12	Radio/X-ray correlation in the low/hard state of GXÂ339–4. Astronomy and Astrophysics, 2003, 400, 1007-1012.	2.1	356
13	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	3.0	297
14	Dissecting X-ray–Emitting Gas Around the Center of Our Galaxy. Science, 2013, 341, 981-983.	6.0	232
15	A Jet-ADAF model for Sgr A*. Astronomy and Astrophysics, 2002, 383, 854-863.	2.1	217
16	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	3.0	215
17	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	3.0	215
18	The Nature of the 10 kilosecond X-ray flare in Sgr A*. Astronomy and Astrophysics, 2001, 379, L13-L16.	2.1	210

#	Article	IF	Citations
19	Exploring the role of jets in the radio/X-ray correlations of GXÂ339-4. Astronomy and Astrophysics, 2003, 397, 645-658.	2.1	207
20	Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 474, L81-L85.	1.2	206
21	Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Physical Review Letters, 2020, 125, 141104.	2.9	190
22	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	3.0	187
23	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	3.0	175
24	THE FUNDAMENTAL PLANE OF ACCRETION ONTO BLACK HOLES WITH DYNAMICAL MASSES. Astrophysical Journal, 2009, 706, 404-416.	1.6	172
25	Using the Fundamental Plane of black hole activity to distinguish X-ray processes from weakly accreting black holes. Monthly Notices of the Royal Astronomical Society, 2012, 419, 267-286.	1.6	172
26	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	3.0	163
27	Multiwavelength Observations of the 2002 Outburst of GX 339â^'4: Two Patterns of Xâ€Ray–Optical/Nearâ€Infrared Behavior. Astrophysical Journal, 2005, 624, 295-306.	1.6	154
28	A <i>CHANDRA</i> /i>/HETGS CENSUS OF X-RAY VARIABILITY FROM Sgr A* DURING 2012. Astrophysical Journal, 2013, 774, 42.	1.6	146
29	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	3.0	142
30	Cygnus X-1 contains a 21–solar mass black hole—Implications for massive star winds. Science, 2021, 371, 1046-1049.	6.0	138
31	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	3.0	137
32	The radio/X-ray domain of black hole X-ray binaries at the lowest radio luminosities. Monthly Notices of the Royal Astronomical Society, 2014, 445, 290-300.	1.6	128
33	A VARIABLE MID-INFRARED SYNCHROTRON BREAK ASSOCIATED WITH THE COMPACT JET IN GX 339-4. Astrophysical Journal Letters, 2011, 740, L13.	3.0	124
34	<i>CHANDRA</i> /HETGS OBSERVATIONS OF THE BRIGHTEST FLARE SEEN FROM Sgr A*. Astrophysical Journal, 2012, 759, 95.	1.6	119
35	Toward the event horizonâ€"the supermassive black hole in the Galactic Center. Classical and Quantum Gravity, 2013, 30, 244003.	1.5	119
36	A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations. Nature, 2016, 531, 70-73.	13.7	116

#	Article	IF	Citations
37	Relativistic Jets in Active Galactic Nuclei and Microquasars. Space Science Reviews, 2017, 207, 5-61.	3.7	115
38	The central parsecs of M87: jet emission and an elusive accretion disc. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3801-3816.	1.6	110
39	Jet spectral breaks in black hole X-ray binaries. Monthly Notices of the Royal Astronomical Society, 2013, 429, 815-832.	1.6	99
40	RADIO AND MILLIMETER MONITORING OF \$mathrm{Sgr}\$ A ^{â<t< sup="">: SPECTRUM, VARIABILITY, AND CONSTRAINTS ON THE G2 ENCOUNTER. Astrophysical Journal, 2015, 802, 69.</t<>}	1.6	99
41	Results from an Extensive Simultaneous Broadband Campaign on the Underluminous Active Nucleus M81*: Further Evidence for Massâ€scaling Accretion in Black Holes. Astrophysical Journal, 2008, 681, 905-924.	1.6	90
42	Accelerating AGN jets to parsec scales using general relativistic MHD simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2200-2218.	1.6	89
43	The Spectral Energy Distribution of Quiescent Black Hole Xâ€Ray Binaries: New Constraints from <i>Spitzer</i> . Astrophysical Journal, 2007, 670, 600-609.	1.6	88
44	Constraining jet/disc geometry and radiative processes in stellar black holes XTE J1118+480 and GX 339â~'4. Monthly Notices of the Royal Astronomical Society, 2009, 398, 1638-1650.	1.6	88
45	Constraining Xâ€Ray Binary Jet Models via Reflection. Astrophysical Journal, 2004, 609, 972-976.	1.6	86
46	Black Hole Flares: Ejection of Accreted Magnetic Flux through 3D Plasmoid-mediated Reconnection. Astrophysical Journal Letters, 2022, 924, L32.	3.0	86
47	Sgr A* flares: tidal disruption of asteroids and planets?. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1315-1324.	1.6	82
48	How to hide large-scale outflows: size constraints on the jets of Sgr A. Monthly Notices of the Royal Astronomical Society, 2007, 379, 1519-1532.	1.6	81
49	The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA. Astrophysical Journal, 2019, 871, 30.	1.6	81
50	A radio parallax to the black hole X-ray binary MAXI J1820+070. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L81-L86.	1.2	80
51	Formation of the compact jets in the black hole GXÂ339â^'4. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 431, L107-L111.	1.2	79
52	The accretion–ejection coupling in the black hole candidate X-ray binary MAXIÂJ1836â^'194. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1390-1402.	1.6	79
53	Disc-jet coupling in the 2009 outburst of the black hole candidate H1743â^322. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	77
54	Polarized NIR and X-ray flares from Sagittarius A*. Astronomy and Astrophysics, 2008, 479, 625-639.	2.1	73

#	Article	IF	Citations
55	Further clues to the nature of composite LINER/H II galaxies. Astronomy and Astrophysics, 2004, 418, 429-443.	2.1	72
56	Correlated optical, X-ray, and $\langle i \rangle \hat{l}^3 \langle i \rangle$ -ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni. Astronomy and Astrophysics, 2015, 581, L9.	2.1	72
57	General relativistic magnetohydrodynamic simulations of accretion on to Sgr A*: how important are radiative losses?. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1928-1939.	1.6	70
58	Simultaneous NIR/sub-mm observation of flare emission fromÂSagittariusÂA*. Astronomy and Astrophysics, 2008, 492, 337-344.	2.1	69
59	The black hole candidate XTE J1752â^'223 towards and in quiescence: optical and simultaneous X-ray-radio observations. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2656-2667.	1.6	68
60	Disk–Jet Coupling in the 2017/2018 Outburst of the Galactic Black Hole Candidate X-Ray Binary MAXI J1535–571. Astrophysical Journal, 2019, 883, 198.	1.6	67
61	The Fundamental Plane of Black Hole Accretion and Its Use as a Black Hole-Mass Estimator. Astrophysical Journal, 2019, 871, 80.	1.6	67
62	A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni. Nature, 2019, 569, 374-377.	13.7	67
63	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	3.0	67
64	Kinetic simulations of mildly relativistic shocks – I. Particle acceleration in high Mach number shocks. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5105-5119.	1.6	66
65	AN EVOLVING COMPACT JET IN THE BLACK HOLE X-RAY BINARY MAXI J1836–194. Astrophysical Journal Letters, 2013, 768, L35.	3.0	65
66	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	4.2	65
67	Following the 2008 outburst decay of the black hole candidate H 1743-322 \tilde{A} ¢ \hat{A} € \hat{A} fin X-ray and radio. Monthly Notices of the Royal Astronomical Society, 2010, 401, 1255-1263.	1.6	63
68	The black hole candidate MAXI J1659-152 $\hat{a} \in f$ in and towards quiescence in X-ray and radio. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3308-3315.	1.6	62
69	Extreme jet ejections from the black hole X-ray binary V404 Cygni. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3141-3162.	1.6	62
70	Tracing the Jet Contribution to the Midâ€IR over the 2005 Outburst of GRO J1655â^'40 via Broadband Spectral Modeling. Astrophysical Journal, 2007, 670, 610-623.	1.6	59
71	An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system. Nature Astronomy, 2017, 1, 859-864.	4.2	59
72	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	3.0	56

#	Article	IF	Citations
73	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	2.1	54
74	Jet-lag in SagittariusÂA*: what size and timing measurements tell us about the central black hole in the Milky Way. Astronomy and Astrophysics, 2009, 496, 77-83.	2.1	53
75	Disc tearing and Bardeen–Petterson alignment in GRMHD simulations of highly tilted thin accretion discs. Monthly Notices of the Royal Astronomical Society, 2021, 507, 983-990.	1.6	53
76	Long term variability of CygnusÂX-1. Astronomy and Astrophysics, 2004, 425, 1061-1068.	2.1	51
77	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	1.6	51
78	THE INTRINSIC TWO-DIMENSIONAL SIZE OF SAGITTARIUS A*. Astrophysical Journal, 2014, 790, 1.	1.6	50
79	ALMA and VLA measurements of frequency-dependent time lags in Sagittarius A*: evidence for a relativistic outflow. Astronomy and Astrophysics, 2015, 576, A41.	2.1	50
80	Radio monitoring of the hard state jets in the 2011 outburst of MAXIÂJ1836â^194. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1745-1759.	1.6	50
81	THE 2015 DECAY OF THE BLACK HOLE X-RAY BINARY V404 CYGNI: ROBUST DISK-JET COUPLING AND A SHARP TRANSITION INTO QUIESCENCE. Astrophysical Journal, 2017, 834, 104.	1.6	50
82	THE X-RAY FLUX DISTRIBUTION OF SAGITTARIUS A* AS SEEN BY <i>CHANDRA</i> . Astrophysical Journal, 2015, 799, 199.	1.6	47
83	Why the fundamental plane of black hole activity is not simply a distance driven artifact. New Astronomy, 2006, 11, 567-576.	0.8	45
84	MULTIWAVELENGTH OBSERVATIONS OF A0620-00 IN QUIESCENCE. Astrophysical Journal, 2011, 743, 26.	1.6	45
85	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	1.6	44
86	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	1.6	43
87	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	3.0	43
88	DETERMINING THE OPTIMAL LOCATIONS FOR SHOCK ACCELERATION IN MAGNETOHYDRODYNAMICAL JETS. Astrophysical Journal, 2010, 723, 1343-1350.	1.6	42
89	Constraints on relativistic jets in quiescent black hole X-ray binaries from broad-band spectral modelling. Monthly Notices of the Royal Astronomical Society, 2015, 446, 4098-4111.	1.6	42
90	Observational signatures of disc and jet misalignment in images of accreting black holes. Monthly Notices of the Royal Astronomical Society, 2020, 499, 362-378.	1.6	42

#	Article	IF	Citations
91	Evidence for a compact jet dominating the broad-band spectrum of the black hole accretor XTE J1550-564. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	41
92	THE LACK OF TORUS EMISSION FROM BL LACERTAE OBJECTS: AN INFRARED VIEW OF UNIFICATION WITH <i>WISE</i> . Astrophysical Journal Letters, 2012, 745, L27.	3.0	41
93	ALMA Observations of the Terahertz Spectrum of Sagittarius A*. Astrophysical Journal Letters, 2019, 881, L2.	3.0	40
94	A CONNECTION BETWEEN PLASMA CONDITIONS NEAR BLACK HOLE EVENT HORIZONS AND OUTFLOW PROPERTIES. Astrophysical Journal, 2015, 814, 139.	1.6	38
95	Self-consistent spectra from radiative GRMHD simulations of accretion on to Sgr A*. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2872-2884.	1.6	37
96	LOFAR discovery of a quiet emission mode in PSR B0823+26. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2493-2506.	1.6	36
97	Chandra Spectral and Timing Analysis of Sgr A*'s Brightest X-Ray Flares. Astrophysical Journal, 2019, 886, 96.	1.6	36
98	Sagittarius A* in Context: Daily Flares as a Probe of the Fundamental X-Ray Emission Process in Accreting Black Holes. Astrophysical Journal, 2005, 618, L103-L106.	1.6	33
99	Highâ€Resolution Xâ€Ray Spectroscopy of a Lowâ€Luminosity Active Galactic Nucleus: The Structure and Dynamics of M81*. Astrophysical Journal, 2007, 669, 830-840.	1.6	32
100	On the Nature of the EGRET Source at the Galactic Center. Astrophysical Journal, 1997, 489, L47-L50.	1.6	32
101	Relativistic AGN jets I. The delicate interplay between jet structure, cocoon morphology and jet-head propagation. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1453-1478.	1.6	30
102	Linking accretion flow and particle acceleration in jets – II. Self-similar jet models with full relativistic MHD gravitational mass. Monthly Notices of the Royal Astronomical Society, 2014, 438, 959-970.	1.6	30
103	Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620. Astronomy and Astrophysics, 2015, 584, A112.	2.1	30
104	General relativistic MHD simulations of non-thermal flaring in Sagittarius A*. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5281-5302.	1.6	30
105	Linking accretion flow and particle acceleration in jets – I. New relativistic magnetohydrodynamical jet solutions including gravity. Monthly Notices of the Royal Astronomical Society, 2013, 428, 587-598.	1.6	29
106	Exploring plasma evolution during Sagittarius A* flares. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1005-1016.	1.6	28
107	Constraining particle acceleration in Sgr A ^{â<†} with simultaneous GRAVITY, <i>Spitzer</i> , <i>NuSTAR</i> , and <i>Chandra</i> observations. Astronomy and Astrophysics, 2021, 654, A22.	2.1	28
108	A clean sightline to quiescence: multiwavelength observations of the high Galactic latitude black hole X-ray binary SwiftÂJ1357.2â^'0933. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2707-2716.	1.6	27

#	Article	IF	CITATIONS
109	A black hole X-ray binary at â ¹ /4100ÂHz: multiwavelength timing of MAXI J1820+070 with HiPERCAM and NIO Monthly Notices of the Royal Astronomical Society: Letters, 2019, 490, L62-L66.	CER 1.2	27
110	Tracking the variable jets of V404 Cygni during its 2015 outburst. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2950-2972.	1.6	27
111	Low-radio-frequency eclipses of the redback pulsar J2215+5135 observed in the image plane with LOFAR. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2681-2689.	1.6	26
112	The varying kinematics of multiple ejecta from the black hole X-ray binary MAXI J1820Â+Â070. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3393-3403.	1.6	26
113	A time-dependent jet model for the emission from Sagittarius A*. Astronomy and Astrophysics, 2009, 508, L13-L16.	2.1	25
114	AS ABOVE, SO BELOW: EXPLOITING MASS SCALING IN BLACK HOLE ACCRETION TO BREAK DEGENERACIES IN SPECTRAL INTERPRETATION. Astrophysical Journal Letters, 2015, 812, L25.	3.0	24
115	Simultaneous X-Ray and Infrared Observations of Sagittarius A*'s Variability. Astrophysical Journal, 2019, 871, 161.	1.6	24
116	Rapid compact jet quenching in the Galactic black hole candidate X-ray binary MAXIÂJ1535â^571. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5772-5785.	1.6	24
117	A new lepto-hadronic model applied to the first simultaneous multiwavelength data set for Cygnus X–1. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2112-2126.	1.6	24
118	Sagittarius A * High-energy X-Ray Flare Properties during NuStar Monitoring of the Galactic Center from 2012 to 2015. Astrophysical Journal, 2017, 843, 96.	1.6	23
119	A new method for extending solutions to the self-similar relativistic magnetohydrodynamic equations for black hole outflows. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4417-4435.	1.6	23
120	Revelations in our own backyard: <i>Chandra's</i> unique Galactic Center discoveries. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7196-7201.	3.3	22
121	A <i>CHANDRA</i> SURVEY OF SUPERMASSIVE BLACK HOLES WITH DYNAMICAL MASS MEASUREMENTS. Astrophysical Journal, 2012, 749, 129.	1.6	22
122	X-ray spectral components of the blazar and binary black hole candidate OJ 287 (2005–2020). Monthly Notices of the Royal Astronomical Society, 2021, 504, 5575-5587.	1.6	22
123	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	3.0	21
124	A JET MODEL FOR THE BROADBAND SPECTRUM OF THE SEYFERT 1 GALAXY NGC 4051. Astrophysical Journal, 2011, 735, 107.	1.6	20
125	A Wildly Flickering Jet in the Black Hole X-Ray Binary MAXI J1535–571. Astrophysical Journal, 2018, 867, 114.	1.6	20
126	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	3.0	20

#	Article	lF	Citations
127	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20.	3.0	20
128	The millimetre variability of M 81*. Astronomy and Astrophysics, 2007, 463, 551-557.	2.1	19
129	Shell-shocked: the interstellar medium near Cygnus X-1. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3579-3592.	1.6	19
130	Using infrared/X-ray flare statistics to probe the emission regions near the event horizon of Sgr A*. Monthly Notices of the Royal Astronomical Society, 2016, 461, 552-559.	1.6	19
131	Persistent Non-Gaussian Structure in the Image of Sagittarius A* at 86 GHz. Astrophysical Journal, 2021, 915, 99.	1.6	19
132	From Multiwavelength to Mass Scaling: Accretion and Ejection in Microquasars and AGN. Lecture Notes in Physics, 2010, , 143-172.	0.3	19
133	Spectral and imaging properties of SgrÂA* from high-resolution 3D GRMHD simulations with radiative cooling. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3178-3192.	1.6	19
134	Mass-scaling as a method to constrain outflows and particle acceleration from low-luminosity accreting black holes. Monthly Notices of the Royal Astronomical Society, 0, , stw3150.	1.6	18
135	SYMBA: An end-to-end VLBI synthetic data generation pipeline. Astronomy and Astrophysics, 2020, 636, A5.	2.1	18
136	A Self-Consistent Model for the Broadband Spectrum of Sagittarius A Eastat the Galactic Center. Astrophysical Journal, 1998, 508, L65-L69.	1.6	18
137	Simultaneous Monitoring of X-Ray and Radio Variability in Sagittarius A*. Astrophysical Journal, 2017, 845, 35.	1.6	17
138	A BLACK HOLE MASS-VARIABILITY TIMESCALE CORRELATION AT SUBMILLIMETER WAVELENGTHS. Astrophysical Journal Letters, 2015, 811, L6.	3.0	15
139	High-energy cosmic ray production in X-ray binary jets. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3212-3222.	1.6	15
140	Combining timing characteristics with physical broad-band spectral modelling of black hole X-ray binary GXÄ339–4. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3696-3714.	1.6	14
141	The high energy Universe at ultra-high resolution: the power and promise of X-ray interferometry. Experimental Astronomy, 2021, 51, 1081-1107.	1.6	14
142	Breaking degeneracy in jet dynamics: multi-epoch joint modelling of the BL Lac PKS 2155–304. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4798-4812.	1.6	13
143	Correlating spectral and timing properties in the evolving jet of the microblazar MAXI J1836â° 194. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5910-5926.	1.6	13
144	Is the plateau state in GRS 1915+105 equivalent to canonical hard states?. Monthly Notices of the Royal Astronomical Society, 2010, 409, 763-776.	1.6	12

#	Article	IF	Citations
145	Unraveling the Innermost Jet Structure of OJ 287 with the First GMVA + ALMA Observations. Astrophysical Journal, 2022, 932, 72.	1.6	12
146	Relativistic AGN jets – II. Jet properties and mixing effects for episodic jet activity. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3969-3985.	1.6	11
147	Paving the way to simultaneous multi-wavelength astronomy. New Astronomy Reviews, 2017, 79, 26-48.	5.2	11
148	What Is the Hidden Depolarization Mechanism in Low-luminosity AGNs?. Astrophysical Journal Letters, 2017, 843, L31.	3.0	11
149	Simultaneous Multiwavelength Observations of V404 Cygni during its 2015 June Outburst Decay Strengthen the Case for an Extremely Energetic Jet-base. Astrophysical Journal, 2017, 851, 148.	1.6	11
150	ALMA observations of A0620–00: fresh clues on the nature of quiescent black hole X-ray binary jets. Monthly Notices of the Royal Astronomical Society, 2019, 488, 191-197.	1.6	9
151	Disc–jet coupling changes as a possible indicator for outbursts from GXÂ339â^'4 remaining within the X-ray hard state. Monthly Notices of the Royal Astronomical Society, 2021, 502, 521-540.	1.6	9
152	No Sign of G2's Encounter Affecting Sgr A*'s X-Ray Flaring Rate from Chandra Observations. Astrophysical Journal, 2019, 884, 148.	1.6	9
153	A LOFAR DETECTION OF THE LOW-MASS YOUNG STAR T TAU AT 149 MHz. Astrophysical Journal, 2017, 834, 206.	1.6	8
154	The unique case of the AGN core of M87: a misaligned low power blazar?. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	8
155	Discovery of a radio transient in M81. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1181-1196.	1.6	7
156	The Chandra High-resolution X-Ray Spectrum of Quiescent Emission from Sgr A*. Astrophysical Journal, 2020, 891, 71.	1.6	7
157	Multiwavelength Variability of Sagittarius A* in 2019 July. Astrophysical Journal, 2022, 931, 7.	1.6	7
158	\hat{AA} <i>Swift</i> study of long-term changes in the X-ray flaring properties of Sagittarius A. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2851-2863.	1.6	6
159	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	1.6	6
160	The prototype X-ray binary GXÂ339–4: using TeV γ-rays to assess LMXBs as Galactic cosmic ray accelerators. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5187-5198.	1.6	6
161	A jet-dominated model for a broad-band spectral energy distribution of the nearby low-luminosity active galactic nucleus in M94. Monthly Notices of the Royal Astronomical Society, 2017, 468, 435-450.	1.6	5
162	Evidence for an expanding corona based on spectral-timing modelling of multiple black hole X-ray binaries. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	5

#	Article	IF	Citations
163	Relativistic AGN jets $\hat{a} \in \mathbb{C}$ III. Synthesis of synchrotron emission from double-double radio galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3638-3657.	1.6	3
164	Infrared interferometry to spatially and spectrally resolve jets in X-ray binaries. Monthly Notices of the Royal Astronomical Society, 2020, 495, 525-535.	1.6	2
165	Jets at lowest mass accretion rates. Proceedings of the International Astronomical Union, 2010, 6, 82-86.	0.0	1
166	Fitting along the Fundamental Plane: New comparisons of jet physics across the black hole mass scale. Proceedings of the International Astronomical Union, 2010, 6, 250-254.	0.0	1
167	GRS1915+105: a comparison of the plateau state to the canonical hard state. Proceedings of the International Astronomical Union, 2010, 6, 294-298.	0.0	1
168	Blazar monitoring with LOFAR. Proceedings of the International Astronomical Union, 2014, 10, 95-96.	0.0	1
169	The 3 Ms Chandra campaign on Sgr A*: a census of X-ray flaring activity from the Galactic center. Proceedings of the International Astronomical Union, 2013, 9, 374-378.	0.0	0
170	Elusive Accretion Discs in Low Luminosity AGN. Proceedings of the International Astronomical Union, 2016, 12, 192-195.	0.0	0
171	Relativistic Jets in Active Galactic Nuclei and Microquasars. Space Sciences Series of ISSI, 2017, , 5-61.	0.0	O