Barbara S Schnierle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2185576/publications.pdf

Version: 2024-02-01

47 papers

1,489

304743 22 h-index 330143 37 g-index

47 all docs

47 docs citations

47 times ranked

2769 citing authors

#	Article	IF	CITATIONS
1	Comparative Investigation of Methods for Analysis of SARS-CoV-2-Spike-Specific Antisera. Viruses, 2022, 14, 410.	3.3	3
2	Longitudinal Analysis of Coronavirus-Neutralizing Activity in COVID-19 Patients. Viruses, 2022, 14, 882.	3.3	3
3	A taRNA vaccine candidate induces a specific immune response that protects mice against Chikungunya virus infections. Molecular Therapy - Nucleic Acids, 2022, 28, 743-754.	5.1	9
4	The SARS-CoV-2 Variant Omicron Is Able to Escape Vaccine-Induced Humoral Immune Responses, but Is Counteracted by Booster Vaccination. Vaccines, 2022, 10, 794.	4.4	5
5	Comparison of potency assays to assess SARS-CoV-2 neutralizing antibody capacity in COVID-19 convalescent plasma. Journal of Virological Methods, 2021, 288, 114031.	2.1	75
6	Analysis of Humoral Immune Responses in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Journal of Infectious Diseases, 2021, 223, 56-61.	4.0	65
7	Reply to Ringlander et al. Journal of Infectious Diseases, 2021, 223, 1833-1833.	4.0	1
8	The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. Journal of General Virology, $2021,102,.$	2.9	95
9	Development of a Sensitive Detection Method for Alphaviruses and Its Use as a Virus Neutralization Assay. Viruses, 2021, 13, 1191.	3.3	4
10	Analysis of Humoral Immune Responses in Chikungunya Virus (CHIKV)-Infected Patients and Individuals Vaccinated With a Candidate CHIKV Vaccine. Journal of Infectious Diseases, 2020, 221, 1713-1723.	4.0	18
11	A New Host Factor Essential for Chikungunya Virus. Trends in Microbiology, 2020, 28, 2-4.	7.7	2
12	A highly immunogenic and effective measles virus-based Th1-biased COVID-19 vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32657-32666.	7.1	60
13	Analysis of Humoral Immune Responses in Chikungunya Virus (CHIKV)-Infected Patients and Individuals Vaccinated with a Candidate CHIKV Vaccine. Proceedings (mdpi), 2020, 50, 95.	0.2	O
14	Interference with SAMHD1 Restores Late Gene Expression of Modified Vaccinia Virus Ankara in Human Dendritic Cells and Abrogates Type I Interferon Expression. Journal of Virology, 2019, 93, .	3.4	5
15	Establishment of an Alphavirus-Specific Neutralization Assay to Distinguish Infections with Different Members of the Semliki Forest complex. Viruses, 2019, 11, 82.	3.3	25
16	Cellular Attachment and Entry Factors for Chikungunya Virus. Viruses, 2019, 11, 1078.	3.3	41
17	Identification of Functional Determinants in the Chikungunya Virus E2 Protein. PLoS Neglected Tropical Diseases, 2017, 11, e0005318.	3.0	41
18	TGN1412 Induces Lymphopenia and Human Cytokine Release in a Humanized Mouse Model. PLoS ONE, 2016, 11, e0149093.	2.5	34

#	Article	IF	CITATIONS
19	Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry. Virology Journal, 2016, 13, 149.	3.4	61
20	Low Seroprevalence Indicates Vulnerability of Eastern and Central Sudan to Infection with Chikungunya Virus. Vector-Borne and Zoonotic Diseases, 2016, 16, 290-291.	1.5	19
21	Identification of entry inhibitors of Ebola virus pseudotyped vectors from a myxobacterial compound library. Antiviral Research, 2016, 132, 85-91.	4.1	16
22	Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections inÂvitro. Antiviral Research, 2016, 125, 51-57.	4.1	57
23	A Small Antigenic Determinant of the Chikungunya Virus E2 Protein Is Sufficient to Induce Neutralizing Antibodies which Are Partially Protective in Mice. PLoS Neglected Tropical Diseases, 2015, 9, e0003684.	3.0	36
24	The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Research, 2015, 113, 1-3.	4.1	96
25	A neutralization assay for chikungunya virus infections in a multiplex format. Journal of Virological Methods, 2014, 201, 7-12.	2.1	23
26	Vaccination directed against the human endogenous retrovirus-K (HERV-K) gag protein slows HERV-K gag expressing cell growth in a murine model system. Virology Journal, 2014, 11, 58.	3.4	25
27	The Cellular Antiviral Restriction Factor Tetherin Does Not Inhibit Poxviral Replication. Journal of Virology, 2012, 86, 1893-1896.	3.4	1
28	Nucleic Acid-Sensing Toll-like Receptors Are Essential for the Control of Endogenous Retrovirus Viremia and ERV-Induced Tumors. Immunity, 2012, 37, 867-879.	14.3	161
29	Functional F11L and K1L genes in modified vaccinia virus Ankara restore virus-induced cell motility but not growth in human and murine cells. Virology, 2010, 404, 231-239.	2.4	14
30	Cutaneous Tâ€cell lymphoma cells are sensitive to rapamycin. Experimental Dermatology, 2010, 19, 800-805.	2.9	21
31	Selective gene silencing by viral delivery of short hairpin RNA. Virology Journal, 2010, 7, 248.	3.4	87
32	Decreased HIV diversity after allogeneic stem cell transplantation of an HIV-1 infected patient: a case report. Virology Journal, 2010, 7, 55.	3.4	8
33	The Orthopoxvirus 68-Kilodalton Ankyrin-Like Protein Is Essential for DNA Replication and Complete Gene Expression of Modified Vaccinia Virus Ankara in Nonpermissive Human and Murine Cells. Journal of Virology, 2009, 83, 6029-6038.	3.4	18
34	The highly conserved orthopoxvirus 68k ankyrin-like protein is part of a cellular SCF ubiquitin ligase complex. Virology, 2008, 374, 234-239.	2.4	34
35	Vaccinia virus double-stranded RNA-binding protein E3 does not interfere with siRNA-mediated gene silencing in mammalian cells. Virus Research, 2007, 126, 1-8.	2.2	14
36	From actually toxic to highly specificnovel drugs against poxviruses. Virology Journal, 2007, 4, 8.	3.4	26

#	Article	IF	CITATIONS
37	Recombinant Modified Vaccinia Virus Ankara–Based Vaccine Induces Protective Immunity in Mice against Infection with Influenza Virus H5N1. Journal of Infectious Diseases, 2007, 195, 1598-1606.	4.0	82
38	Vaccinia virus replication is not affected by APOBEC3 family members. Virology Journal, 2006, 3, 86.	3.4	28
39	Stable integration of a functional shRNA expression cassette into the murine leukemia virus genome. Virology, 2006, 351, 218-225.	2.4	12
40	Double-stranded RNA-binding protein E3 controls translation of viral intermediate RNA, marking an essential step in the life cycle of modified vaccinia virus Ankara. Journal of General Virology, 2006, 87, 1145-1155.	2.9	35
41	Human APOBEC3G incorporation into murine leukemia virus particles. Virology, 2005, 337, 175-182.	2.4	12
42	HIV-1 Vif: HIVs Weapon Against the Cellular Defense Factor APOBEC3G. Current HIV Research, 2005, 3, 339-344.	0.5	17
43	Establishment of a mouse xenograft model for mycosis fungoides. Experimental Dermatology, 2004, 13, 406-412.	2.9	26
44	Murine leukemia virus (MLV) replication monitored with fluorescent proteins. Virology Journal, 2004, 1, 14.	3.4	22
45	The proline-rich region of the ecotropic Moloney murine leukaemia virus envelope protein tolerates the insertion of the green fluorescent protein and allows the generation of replication-competent virus. Journal of General Virology, 2003, 84, 369-373.	2.9	30
46	MLV/HIV-pseudotyped vectors: a new treatment option for cutaneous t cell lymphomas. Molecular Therapy, 2003, 8, 756-761.	8.2	7
47	Chimeric Ecotropic MLV Envelope Proteins that Carry EGF Receptor-Specific Ligands and the Pseudomonas Exotoxin A Translocation Domain to Target Gene Transfer to Human Cancer Cells. Virology, 2002, 302, 333-341.	2.4	15